Study on the Maximum Contact Stress of Involute Gear Pair with a Small Number of Teeth

2013 ◽  
Vol 456 ◽  
pp. 193-198
Author(s):  
Yan Feng Liu ◽  
Yue Hai Sun ◽  
Qiang Sun ◽  
Jing Xiao

As the traditional calculation formula for contact strength of involute gear pair is not applicable for the calculation of those with small number of the teeth, some researches on the calculation of contact strength of involute gear pairs have been done. The calculation of the contact ratio of involute gear pair with a small number of teeth can confirm that its end face engagement must be of single-tooth mesh, while the research on the actual contacting lines in the meshing zone can find out the precalculated position, computational formula, and strength condition of the maximum contact stress according with the gear pairs with a small number of teeth.

2020 ◽  
Vol 13 (4) ◽  
pp. 352-365
Author(s):  
Guangxin Wang ◽  
Lili Zhu ◽  
Peng Wang ◽  
Jia Deng

Background: Nutation drive is being extensively investigated due to its ability to achieve a high reduction ratio with a compact structure and the potential for low vibration, high efficiency and design flexibility. However, many problems including the difficulty to process the inner bevel gear, less number of teeth in engagement and not being suitable for high-power transmission have restricted its development. Objective: The purpose of this paper is to analyze the contact strength of a patent about a new nutation drive developed based on meshing between two face gears, which has the advantages of both face gear and nutation drive, including large transmission ratio, large coincidence, small size, compact structure and strong bearing capacity. Methods: Based on the meshing principle and basic structure of the nutation face gear drive, the contact strength of nutation face gear transmission is analyzed by the Hertz contact analysis method and FEM method. Results: The maximum stress values of nutation face gear teeth are compared by two methods, which verify the accuracy of Hertz contact analytical method in calculating the contact strength of nutation face gear teeth. Furthermore, nine groups of three-dimensional models for the nutation face gear drive with a transmission ratio of 52 and different cutter parameters are established. Conclusion: The study analyzes the contact stress of fixed and rotary face gears in meshing with planetary face gears, and obtains the distribution law of contact stress and the influence of the number of teeth and parameters of the cutter on the load-carrying capacity.


2021 ◽  
Vol 9 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Thanin Chanmalai ◽  
Byungik Chang ◽  
Kevin Misaro ◽  
Saron Hagos ◽  
Thippesh Bethur Hanumanthareddy

The incremental launching method (ILM) is an efficient method of bridge construction primarily suited for environmentally sensitive areas. However, during the bridge launching, there are significant contact stresses between the launching system and the steel bridge girders. These substantial contact stresses can cause damage both on, and just under, the girder surface. Although Hertz contact theory solutions may give an insight into the problem, the accuracy is uncertain due to the presence of complex geometries, loads, and material properties. The complicated structural systems need to rely on numerical modeling such as the finite element analysis which are not always available. The primary objective of this study is to estimate the relationship of the maximum contact stress between an I-girder and a roller using a nomogram. The nomogram is built based on a parametric study with various roller dimensions and loads by numerical modeling. The maximum contact stress from the nomogram can be a useful tool in designing a bridge girder on a support roller.


Author(s):  
P. Javier Gamez-Montero ◽  
Esteve Codina

The aim of the first part of this paper is to reach the optimum design parameters of a gear set when it works as part of an internal gear pump type gerotor. The performance of the gear teeth and the whole gear set are evaluated through analytical studies to obtain the maximum contact stress in gear teethe and the volumetric characteristics. Several gear sets have been examined and the results are presented. The aim of the second part of the this paper is to documents a better understanding of the performance of a crankshaft mounted gerotor pump for IC engines lubrication. Modeling, simulation and experimental work have been examined for a specific unit. A preliminary 2D simulation is carried out by using the Finite Element Method (FEX) to calculate the maximum contact stress. At the testing phase, a prototype model of the gear set provides the maximum contact stress on a pair of teeth by using photoelasticity measurement techniques. The results are exposed and discussed and possible alterations are proposed.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Sunghwan Kim ◽  
Mark Carl Miller

A finite element (FE) elbow model was developed to predict the contact stress and contact area of the native humeroradial joint. The model was validated using Fuji pressure sensitive film with cadaveric elbows for which axial loads of 50, 100, and 200 N were applied through the radial head. Maximum contact stresses ranged from 1.7 to 4.32 MPa by FE predictions and from 1.34 to 3.84 MPa by pressure sensitive film measurement while contact areas extended from 39.33 to 77.86 mm2 and 29.73 to 83.34 mm2 by FE prediction and experimental measurement, respectively. Measurements from cadaveric testing and FE predictions showed the same patterns in both the maximum contact stress and contact area, as another demonstration of agreement. While measured contact pressures and contact areas validated the FE predictions, computed maximum stresses and contact area tended to overestimate the maximum contact stress and contact area.


2011 ◽  
Vol 130-134 ◽  
pp. 2306-2310
Author(s):  
Yan Gang Wei ◽  
Meng Sun

According to the theory of contact mechanics, the radial stiffness, the maximum contact stress, and the maximum radial load of pre-loaded cylindrical roller bearings, including both solid roller and hollow roller bearings, are calculated with the finite element method. The effects of load on the radial stiffness, the maximum contact stress, and the maximum radial load of bearing are analyzed. The analysis results show that the effect of load on the radial stiffness is complex. Under the different magnitude loads, the effects of both hollowness and interference magnitude on the radial stiffness and on the maximum contact stress are not same. Thus the effects of load magnitude must be considered in the design and application of pre-loaded cylindrical roller bearings.


Author(s):  
Fuying Zhang ◽  
Haoche Shui ◽  
Jun-Mei Yang

The finite element model of four packer rubber materials was established by using ABAQUS and FE-SAFE software. The initial sealing load (the load is the pressure) was 11.85 MPa, and the working load was 58.15 MPa. The sealing evaluation coefficient, maximum contact stress, and fatigue life value of four material packer rubbers were considered when considering temperature changes and fatigue unit nodes. The results show that when the working load and the structural parameters of the rubber are the same, the sealing evaluation coefficient of the four material rubber increases with the increase of temperature. When the working temperature reaches 125 ℃, the value of the rubber seal evaluation coefficient of the HNBR material is the largest, and the value of the rubber seal evaluation coefficient of the EPDM material is the smallest. Similarly, the maximum contact stress of the four material rubbers increases with increasing temperature. When the temperature reaches 125 ℃, the maximum contact stress of the HNBR material is the largest, and the maximum contact stress of the EPDM material is the smallest. The rubber of the four materials increase the fatigue life value with the increase in the temperature within the operating temperature range studied. When the temperature is lower than 120 ℃, the fatigue life value of the HNBR material rubber is the largest. When the temperature is higher than 120 ℃, the fatigue life value of the CR material rubber is the largest. Regardless of the temperature change, the fatigue life value of the EPDM is the smallest. By comparing the results of field experiments with the results of finite element models, the two are found to have good consistency, which verifies the validity and feasibility of the model. The research results have important guiding significance for the fatigue life prediction of various material packer rubbers under different temperatures.


Sign in / Sign up

Export Citation Format

Share Document