Effect of Grain Refinement and Composition on the Wear of Cemented Carbide Cutting Tools

2013 ◽  
Vol 456 ◽  
pp. 507-511
Author(s):  
Jian Bing Cheng ◽  
Si Qin Pang ◽  
Xi Bin Wang ◽  
Qi Xun Yu

Tool life tests of continuous cutting superalloy GH2132 were carried out by WC/Co cemented carbide cutting inserts of different grain size and cobalt content, and flank surface wear morphology of the cutting inserts were observed by ZEISS continuous zoom stereo microscope and microphotograph system. The results show that grain size and cobalt content strongly influence the cutting tool life and tool wear, grain refinement and proper cobalt content are help to improve the tool life and the wear resistance of WC/Co cemented carbide. The wear mechanisms of different grain size and cobalt content of ultrafine cemented carbide tools were adhesion and notch, among them, adhesive was the main wear mechanism at higher cutting speeds.

2013 ◽  
Vol 423-426 ◽  
pp. 720-724
Author(s):  
Jian Bing Cheng ◽  
Si Qin Pang ◽  
Xi Bin Wang ◽  
Qi Xun Yu

By using the method of low pressure sintering, both of adding and not adding grain growth inhibitor of WC-Co ultra-fine cemented carbide cutting inserts were prepared, tool life tests of continuous cutting superalloy GH2132 were carried out, respectively. ZEISS continuous zoom stereo microscope and microphotograph system were used to observe flank surface wear morphology of the cutting inserts, and analysis the topography and elements of central wear region of flank surface by X-ray energy dispersive spectrometry and scanning electron microscope. The results show that the main wear mechanism of ultrafine cemented carbide cutting inserts is adhesive wear, and the wear resistance of ultrafine cemented carbide cutting inserts that added grain growth inhibitor is superior to no grain growth inhibitor, adding grain growth inhibitor helps increase the resistance of abrasive wear, adhesive wear and oxidative wear as well as diffusive wear of cutting inserts).


2014 ◽  
Vol 875-877 ◽  
pp. 1344-1351
Author(s):  
Jian Bing Cheng ◽  
Si Qin Pang ◽  
Xi Bin Wang ◽  
Xi Bin Wang ◽  
Chen Guang Lin

This work contributes to a better understanding of wear mechanisms of ultrafine cemented carbide cutting tools used in turning operation of superalloy and high strength steels at high cutting speeds. The main objective of this work is to verify the influence of grain size and the cobalt content of ultrafine cemented carbide tools on tool life and tool wear mechanism. The main conclusions are that grain size and the cobalt content of ultrafine cemented carbide tools strongly influence tool life and tool wear involve different mechanisms. The wear mechanisms of different grain size and the cobalt content of ultrafine cemented carbide tools observed on the rake face at these conditions were adhesion and notch, at the end of tool life, adhesion was the main wear mechanism at higher cutting speeds.


2013 ◽  
Vol 395-396 ◽  
pp. 792-796
Author(s):  
Jian Bing Cheng ◽  
Si Qin Pang ◽  
Xi Bin Wang ◽  
Qi Xun Yu

Ultrafine WC-Co cemented carbide cutting inserts were prepared by <em>direct low pressure sintering and low pressure sintering after the </em><em>powder pre</em><em>treatment, tool life test</em><em>s</em><em> of continuous cutting superalloy GH2132 were carried out, respectively</em><em>.</em> ZEISS continuous zoom stereo microscope and microphotograph system were used to observe flank surface wear morphology of the cutting inserts, <em>and analysis the topography and elements of central wear region of flank </em><em>sur</em><em>face </em><em>by</em><em> </em><em>X</em><em>-ray </em>energy dispersive spectrometry<em> and scanning electron microscope. </em>The results show that <em>the main wear mechanism of ultrafine </em>cemented carbide<em> cutting </em><em>insert</em><em>s is </em><em>adhesive wear, </em>and the wear resistance of <em>ultrafine </em>cemented carbide<em> cutting </em><em>insert</em><em>s that low pressure sintering after </em><em>powder</em><em> </em><em>pre</em><em>treatment</em> is <em>superior to direct sintering, </em><em>powder </em>pretreatment helps increase the resistance of abrasive wear, adhesive wear and oxidative wear as well as diffusive wear of cutting inserts.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Johannes Kümmel ◽  
Katja Poser ◽  
Frederik Zanger ◽  
Jürgen Michna ◽  
Volker Schulze

Analyzing wear mechanisms and developments of surface layers in WC/Co-cemented carbide cutting inserts is of great importance for metal-cutting manufacturing. By knowing relevant processes within the surface layers of cutting tools during machining the choice of machining parameters can be influenced to get less wear and high tool life of the cutting tool. Tool wear obviously influences tool life and surface integrity of the workpiece (residual stresses, surface quality, work hardening, etc.), so the choice of optimised process parameters is of great relevance. Vapour-deposited coatings on WC/Co-cemented carbide cutting inserts are known to improve machining performance and tool life, but the mechanisms behind these improvements are not fully understood. The interaction between commercial TiN-coated and uncoated WC/Co-cemented carbide cutting inserts and a normalised SAE 1045 steel workpiece was investigated during a dry plain turning operation with constant material removal under varied machining parameters. Tool wear was assessed by light-optical microscopy, scanning electron microscopy (SEM), and EDX analysis. The state of surface layer was investigated by metallographic sectioning. Microstructural changes and material transfer due to tribological processes in the cutting zone were examined by SEM and EDX analyses.


2018 ◽  
Vol 941 ◽  
pp. 2367-2372 ◽  
Author(s):  
Sara Saketi ◽  
Ulf Bexell ◽  
Jonas Östby ◽  
Mikael Olsson

Cemented carbides are the most common cutting tools for machining various grades of steels. In this study, wear behavior of two different cemented carbide grades with roughly the same fraction of binder phase and carbide phase but different grain size, in turning austenitic stainless steel is investigated. Wear tests were carried out against 316L stainless steel at 180 and 250 m/min cutting speeds.The worn surface of cutting tool is characterized using high resolution scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES) and 3D optical profiler.The wear of cemented carbide in turning stainless steel is controlled by both chemical and mechanical wear. Plastic deformation, grain fracture and chemical wear is observed on flank and rake face of the cutting insert. In the case of fine-grained, the WC grains has higher surface contact with the adhered material which promotes higher chemical reaction and degradation of WC grains, so chemical wear resistance of the composites is larger when WC grains are larger. The hardness of cemented carbide increase linearly by decreasing grain size, therefore mechanical wear resistance of the composites is larger when WC grains are smaller.


2014 ◽  
Vol 966-967 ◽  
pp. 80-86
Author(s):  
Varunee Premanond ◽  
Onnjira Diewwanit

The objective of this work is to investigate the tribological behavior between WC-Co cemented carbide and austenitic stainless steel under repeated rotation sliding. Influences of cobalt content of commercial grade cemented tungsten carbide on friction coefficient and material transfer phenomena have been explored. Three grades of commercial WC-Co cemented carbide with similar medium WC grain size were employed; WC-12Co, WC-14Co and WC-19Co. The average grain size were ranges between 0.85-1.1 μm and the hardness of about 86-88 HRA have been given by the material maker. The composition analysis and the average grain size of tungsten carbide have been rechecked. Furthermore, the carbide grain size distribution was recorded and the fracture toughness was calculated for each WC-Co grade. The experiments were carried out using ball on disk test. The ball was made from SUS304 grade and the disk was fabricated by 3 grades of WC-Co cemented carbide. The friction coefficient was measured under dry sliding. The characteristics of contact surfaces were explored on the ball as well as on the disk after tests to reveal the presence of a metallic transfer on the WC-Co cemented carbide disk and the wear scar on the ball. The measurement results of wear volume on the stainless steel ball disclosed that maximum wear rate was found from the stainless steel ball rub against WC-19Co tool material.


Author(s):  
Abdullah Sert ◽  
Fatih Hayati ÇAKIR

Abstract In this study, the performance of Ø 8 mm WC-Co (10%) drill bits with a TiAlN coating was tested for machining of Ti6Al4V alloy with a Widmanstatten structure. In order to improve the tool life, cutting tools were subjected to deep cryogenic treatment. In total, three groups of tools were prepared for this study. The first group was used for reference as the supplied state; the second group was subjected to 24 hours deep cryogenic treatment at -196 ° C, and the third group was subjected to 24 hours deep cryogenic at -196 ° C, additionally was tempered 2 hours at 200 ° C. Machining experiments were done by drilling and a set of 60 holes were drilled with each drill bit, and tool wear were observed and recorded with a stereo microscope. Additionally, Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) analyses were carried on to understand the tool wear better. The microhardness of Cryo-treated and tempered cutting tools hardness increased up to 20 Hv (about 1%), and the toughness value did not change significantly. Cutting performance was observed by measuring the cutting forces during drilling experiments. According to these results, deep cryogenic treatment on WC-Co-based inserts decreased cutting forces by approximately 7% compared to the reference drill bit, which affected the cutting tool life. The dominant wear mechanism was Built-up edge (BUE) formation, and cryo-treatment lowered the BUE amount 8% and cryo-treated and tempered drill bit 45% compared to the reference drill bit.


2011 ◽  
Vol 117-119 ◽  
pp. 990-994
Author(s):  
Wei Wei ◽  
Zhi Wu Wang ◽  
Mao Lin Liu

Exposed to 650°C air, TP304H stainless steel with two different grain size was oxidized at this temperature. At the meantime, comparison of their oxidation was through the oxidation kinetics curves and analysis of the morphology and composition of oxide scale which conducted by SEM and X-ray. The results showed that the oxidation rate of TP304H stainless steel was slowed down by grain refinement and oxide scale of fine-grained TP304H steel was thinner than that of coarse-grained steel. The nucleation and the growth of nuclei of coarse-grained oxide scale were more rapid. In addition, the grain refinement of austenitic stainless steel accelerated the diffusivity of Cr and made for the formation of dense and continuous oxide scale, so that the oxidation of stainless steel can be effectively inhabited.


Author(s):  
Ayyankalai Muthuraja ◽  
Selvaraj Senthilvelan

Tungsten carbide cutting tools with and without solid lubricant (WC-10Co-5CaF2 and WC-10Co) were developed in-house via powder metallurgy. The developed cutting tools and a commercial WC-10Co cutting tool were used to machine cylindrical AISI 1020 steel material under dry conditions. The cutting force and average cutting tool temperature were continuously measured. The cutting tool flank surface and chip morphology after specific tool life (5 min of cutting) were examined to understand tool wear. The flank wear of the considered cutting tools was also measured to quantify the cutting tool life. The surface roughness of the workpiece was measured to determine the machining quality. The developed cutting tool with solid lubricant (WC-10Co-5CaF2) generated 20%–40% less cutting force compared to that of the developed cutting tool without solid lubricant (WC-10Co). In addition, the finish of the workpiece surface improved by 16%–20% when it was machined by the solid lubricant cutting tool. The cutting tool with solid lubricant (WC-10Co-5CaF2) exhibited a 15%–18% reduction in flank wear. Curlier and smaller saw tooth chips were generated from the WC-10Co-5CaF2 cutting tool, confirming that less heat was generated during the cutting process, and the finish of the machined surface was also improved.


Sign in / Sign up

Export Citation Format

Share Document