Performance evaluation of a tungsten carbide–based self-lubricant cutting tool

Author(s):  
Ayyankalai Muthuraja ◽  
Selvaraj Senthilvelan

Tungsten carbide cutting tools with and without solid lubricant (WC-10Co-5CaF2 and WC-10Co) were developed in-house via powder metallurgy. The developed cutting tools and a commercial WC-10Co cutting tool were used to machine cylindrical AISI 1020 steel material under dry conditions. The cutting force and average cutting tool temperature were continuously measured. The cutting tool flank surface and chip morphology after specific tool life (5 min of cutting) were examined to understand tool wear. The flank wear of the considered cutting tools was also measured to quantify the cutting tool life. The surface roughness of the workpiece was measured to determine the machining quality. The developed cutting tool with solid lubricant (WC-10Co-5CaF2) generated 20%–40% less cutting force compared to that of the developed cutting tool without solid lubricant (WC-10Co). In addition, the finish of the workpiece surface improved by 16%–20% when it was machined by the solid lubricant cutting tool. The cutting tool with solid lubricant (WC-10Co-5CaF2) exhibited a 15%–18% reduction in flank wear. Curlier and smaller saw tooth chips were generated from the WC-10Co-5CaF2 cutting tool, confirming that less heat was generated during the cutting process, and the finish of the machined surface was also improved.

Author(s):  
Anshuman Das ◽  
Miyaz Kamal ◽  
Sudhansu Ranjan Das ◽  
Saroj Kumar Patel ◽  
Asutosh Panda ◽  
...  

AISI D6 (hardness 65 HRC) is one of the hard-to-cut steel alloys and commonly used in mould and die making industries. In general, CBN and PCBN tools are used for machining hardened steel but its higher cost makes the use for limited applications. However, the usefulness of carbide tool with selective coatings is the best substitute having comparable tool life, and in terms of cost is approximately one-tenth of CBN tool. The present study highlights a detailed analysis on machinability investigation of hardened AISI D6 alloy die steel using newly developed SPPP-AlTiSiN coated carbide tools in finish dry turning operation. In addition, a comparative assessment has been performed based on the effectiveness of cutting tool performance of nanocomposite coating of AlTiN deposited by hyperlox PVD technique and a coating of AlTiSiN deposited by scalable pulsed power plasma (SPPP) technique. The required number of machining trials under varied cutting conditions (speed, depth of cut, feed) were based on L16 orthogonal array design which investigated the crater wear, flank wear, surface roughness, chip morphology, and cutting force in hard turning. Out of the two cutting tools, newly-developed nanocomposite (SPPP-AlTiSiN) coated carbide tool promises an improved surface finish, minimum cutting force, longer tool life due to lower value of crater & flank wears, and considerable improvement in tool life (i.e., by 47.83%). At higher cutting speeds, the crater wear length and flank wear increases whereas the surface roughness, crater wear width and cutting force decreases. Chip morphology confirmed the formation of serrated type saw tooth chips.


1969 ◽  
Vol 91 (3) ◽  
pp. 790-796 ◽  
Author(s):  
A. Bhattacharyya ◽  
I. Ham

Cutting tools of sufficient strength against failure by brittle fracture or loss of “form stability” through rise of interface temperatures, still continue to fail by a process of “wear,” which is loss of cutting tool material through gradual interaction between the work and the tool material. Such wear can take place either at the principal flank surface or at the top face of the cutting tool for roughing and semiroughing cuts. Wear may also occur at the auxiliary flank surface resulting in grooving wear during fine machining or machining of high strength materials. The causes for such wear processes include (i) mechanical interaction (abrasion or adhesion and transfer type), (ii) thermochemical interaction (diffusion or chemical reaction). As a part of this investigation on tool wear, two theoretical models have been proposed for explaining mechanical wear at the flank surface. These models explain the nature and characteristics of wear growth and the sensitiveness and dependence of interaction phenomena between the tool-work pair.


2014 ◽  
Vol 660 ◽  
pp. 55-59 ◽  
Author(s):  
Zazuli Mohid ◽  
N.M. Warap ◽  
R. Ibrahim ◽  
E.A. Rhim

In micro scale, the size of cutting tool and shape significantly contributed to the machining performance. Many studies have been done to improve the cutting tool life and machined surface quality. Problems could become more severe when the workpiece has a low thermal conductivity while having high level of ductility such as titanium alloy. In this study, micro ball mill cutting tool is selected to produce a linear groove on a titanium alloy plate. The process is integrated with a laser source as a pre-heating element on the work piece surface. The condition of the flank surface of the tools and cutting force were observed and discussed. The influence of tool orientation and laser heating parameters in laser assisted micro ball milling (LAMM) were also discussed. It was found out that adhesion is the dominant tool wear mechanism thus fluctuate the cutting force value.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4142
Author(s):  
Zhongfei Zou ◽  
Lin He ◽  
Hongwan Jiang ◽  
Sen Yuan ◽  
Zhongwei Ren

This study designed a new microgroove cutting tool to machine Inconel 718 and focused on the effect of microgroove structure on the cutting performance and chip morphology during the turning. A comparative analysis of the cutting force, cutting temperature, tool life, tool wear, and chip morphology of the microgroove cutting tool and the original cutting tool was conducted. The main cutting force and temperature of the microgroove cutting tool were reduced by 12% and 12.17%, respectively, compared with the original cutting tool. The microgroove cutting tool exhibited a significant improvement compared with the original cutting tool, which extended the tool life by up to 23.08%. Further, the microgroove cutting tool distorted the curl radius of the chips extensively. The experimental results showed that the microgroove structure can not only improve the tool life, but also improve the chip breaking effect.


2016 ◽  
Vol 836-837 ◽  
pp. 155-160 ◽  
Author(s):  
Si Qi Liu ◽  
Yan Chen ◽  
Yu Can Fu ◽  
An Dong Hu

AFRP(Aramid Fiber Reinforced Plastics) is widely used in the aerospace and automotive while there are many problems in machining AFRP such as furry, delamination, burns and so on. Milling experiments of AFRP have been conducted to study the influence of different helix angle (0°, 30°, 60°) and cutting tools (traditional end mill, multiple flute end mill and compression end mill) on cutting force and machined surface quality. The results indicated that the cutting force has been reduced and the surface quality has been improved with the increase of helix angle. The cutting tool structure can make greater influence on machined surface quality than the cutting parameters. A cutting tool with the structure of multiple flute or herringbone cutting edge could reduce the axial cutting force. However the cutting force is too small to cut off fibers when using a multiple flute end mill. A good processing surface can be achieved while cutting with a compression end mill or a tool with big helix angle.


Author(s):  
Б.Я. Мокрицкий ◽  
В.М. Давыдов

Актуальность. Изложены результаты совершенствования токарной обработки заготовок ответственных деталей морских судов, особенно подводных, и сооружений, подвергаемых в процессе эксплуатации агрессивному воздействию морской воды, например, валопроводов судов. Такие детали, как правило, выполняются из специализированных труднообрабатываемых нержавеющих сталей. Специфические свойства таких сталей создают серьёзные сложности при их обработке лезвийным металлорежущим инструментом. Например, период стойкости типового токарного резца отечественных или зарубежных изготовителей не превышает 40 минут. Это не приемлемо для сегодняшнего уровня высокопроизводительной обработки. Целью работы является повышение эффективности токарной обработки таких сталей. Решение этой задачи достигнуто за счёт разработки новых покрытий для таких режущих пластин. Методы исследования. Для разработки использовано имитационное моделирование как метод исследования. Оно выполнено в программной среде Deform. Она адаптирована под решаемую задачу. Результаты. Разработан металлорежущий инструмент с покрытиями, обеспечивающий повышение периода стойкости в 2 и более раз. Вывод. Поставленная цель достигнута. Обеспечено повышение периода стойкости металлорежущего инструмента в 2 и более раз без снижения производительности обработки и с повышением качества поверхности обработанной заготовки детали. The relevance of the research is due to the fact, that a number of parts of marine vessels and structures must be made of corrosion-resistant steels. These are specialized stainless steels. They have a lot of chrome and nickel. It makes difficult to process blanks of details by metal-cutting tools. Its durability period is insufficient. The aim of the research is to increase the efficiency of turning such steels. Efficiency here means an increasing of the service life of a metal-cutting tool without decreasing of the processing performance and the quality of the machined surface of the detail. The software environment Deform was used as a method of the simulation research. Initial and output criterias have been developed for it. For this purpose, the software environment is adapted to the solving problem. As input parameters, the architecture of the coating is set, when applied to the hard-alloy material, an increase of the tool life is expected. The following results were obtained. Coatings for turning tools, providing the increase of the tool life to 2 or more times, were designed. The output. The setted goal has been achieved. The service life of the metal-cutting tool is increased to 2 or more times without decreasing of the processing performance and with an increase of the surface quality of the processed details.


2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


2021 ◽  
Vol 40 (1) ◽  
pp. 77-86
Author(s):  
Siwen Tang ◽  
Pengfei Liu ◽  
Zhen Su ◽  
Yu Lei ◽  
Qian Liu ◽  
...  

Abstract Al2O3 nano-scaled coating was prepared on micro-textured YT5 cemented carbide cutting tools by atomic layer deposition ALD. The effect of Al2O3 nano-scaled coating, with and without combined action of texture, on the cutting performance was studied by orthogonal cutting test. The results were compared with micro-textured cutting tool and YT5 cutting tool. They show that the micro-texture and nano-scaled Al2O3 coated on the micro-texture both can reduce the cutting force and friction coefficient of the tool, and the tools with nano-scaled Al2O3 coated on the micro-texture are more efficient. Furthermore, the friction coefficient of the 100 nm Al2O3-coated micro-texture tool is relatively low. When the distance of the micro-pits is 0.15 mm, the friction coefficient is lowest among the four kinds of pit textured nanometer coating tools. The friction coefficient is the lowest when the direction of the groove in strip textured nanometer coating tool is perpendicular to the main cutting edge. The main mechanism of the nanometer Al2O3 on the micro-textured tool to reduction in cutting force and the friction coefficient is discussed. These results show that the developed tools effectively decrease the cutting force and friction coefficient of tool–chip interface.


1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


Sign in / Sign up

Export Citation Format

Share Document