Microstructure and Properties of SiC Particle Reinforced Aluminum Matrix Composites by Powder Metallurgy Method

2013 ◽  
Vol 457-458 ◽  
pp. 131-134 ◽  
Author(s):  
Tao Fan ◽  
Cong Li Xiao ◽  
Yan Rong Sun ◽  
Hong Bo Li

The aim of this study is to investigate the effect of SiC particle pretreatment, aluminum matrix particle size and sintering temperature on relative density, hardness, microstructure and wear resistance to SiC particle einforced aluminum matrix composites. To this end, the amount of 16.7 wt.% SiC with average particle sizes 20μm was used along with pure aluminum of average particle size of 75 μm and 25μm. Powder metallurgy is a method used in the fabrication of this composite in which the powders were mixed using a planetary ball mill. By analyzing SEM micrograph and the Property test, it is concluded that SiC particle pretreatment has significant effect on the morphology of pecimens. pretreatment increase the interface adhesion, improve the wettability. SiC is uniformly distributed in the matrix, with good relation to the substrate, the maximum hardness is 51.1HB, the minimum wear rate is 0.1684%, while the density is 97.3%.For the same SiC content and particle size, the smaller the particle size of aluminum matrix is, the higher wear resistance of composite materials is on condition that others are same, the higher sintering temperature and the higher the wearability of composites, the wear resistance of the composite material is significantly improved after SiC pre-processing.The relative density increases with increasing aluminum matrix particle sizes under the same pressure and the holding time. The actual density of all samples reached the theoretical density over 96%, to a maximum of 98.9%.

2012 ◽  
Vol 05 ◽  
pp. 607-614 ◽  
Author(s):  
Mohammad Amin Baghchesara ◽  
Hossein Abdizadeh ◽  
Hamid Reza Baharvandi

The objective of the present investigation was to evaluate the microstructural and mechanical properties of Al /nano MgO composite prepared via powder metallurgy method. Pure atomized aluminum powder with an average particle size of 1μm and MgO particulate with an average particle size between 60 to 80 nm were used. Composites containing 1.5, 2.5 and 5 percent of volume fraction of MgO were prepared by powder metallurgy method. The specimens were pressed by Cold Isostatic Press machine (CIP), subsequently were sintered at 575, 600 and 625°C. After sintering and preparing the samples, mechanical properties were measured. The results of microstructure, compression and hardness tests indicated that addition of MgO particulates to aluminum matrix composites improves the mechanical properties.


2010 ◽  
Vol 455 ◽  
pp. 302-306 ◽  
Author(s):  
Xing Xin Xu ◽  
Xiao Hui Zhang ◽  
Chuan Shao Liu ◽  
Bo Zhao

With the rapid development of aviation at home, particle reinforced metal matrix composites (PRMMCs) has been widely applied recently. But at the same time, the difficult machining has gradually been one of the most outstanding bottle-necks that restrict the rapid enhancement of productivity. Here, in virtue of the self-developed ultrasonic drilling equipment, hole-making experiments of common and ultrasonic vibration drilling are performed on SiC particle reinforced aluminum-matrix composites (SiCp/Al)with different content of SiC by using two types of tungsten carbide drill. Drilling characteristics of machining composites with ultrasonic vibration are analyzed from such respects as the composites crush, drilling force, drill wear and hole surface quality. Studies show that, during the ultrasonic vibration drilling process, SiC particle in the composites is prone to break along the crystal connection boundary or suffer ductile fracture under the dynamic ultrasonic impulse, in which the cutting resistance could be reduced and the tool edge could be protected. Thereby, drilling locating precision and hole surface quality could be enhanced, wear of the drill chisel edge effectively improved, and the drilling torque reduced about 30%.


2016 ◽  
Vol 254 ◽  
pp. 110-115
Author(s):  
Mihai Ovidiu Cojocaru ◽  
Mihaela Raluca Condruz ◽  
Florică Tudose

In this paper was followed the processing flow of aluminum-alumina compositions (10÷20% alumina) in powder state, aiming to obtain aluminum matrix composites reinforced with alumina particles, starting from selecting and mixing the grading fraction of both components reaching up to sintering; it was analyzed the way in which reflects the variation of grading fraction ratio (expressed through average particle diameter in the analyzed fractions limits) on the level of technological interest features: apparent density, tapped density, flowability, presability and on densification after sintering (in various environments). By transmission electron microscopy was observed that aluminum particles showed on the surface a nanoscale oxide film, so the sintering occurs between congeneric areas – by solid phase sintering mechanisms [1, 2, 3]. The analysis of thermophysical properties revealed a decrease of thermal diffusivity at an increase of alumina, simultaneous with the decrease of the densification level.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4030 ◽  
Author(s):  
Amélie Veillère ◽  
Hiroki Kurita ◽  
Akira Kawasaki ◽  
Yongfeng Lu ◽  
Jean-Marc Heintz ◽  
...  

Aluminum matrix composites reinforced with carbon fibers or diamond particles have been fabricated by a powder metallurgy process and characterized for thermal management applications. Al/C composite is a nonreactive system (absence of chemical reaction between the metallic matrix and the ceramic reinforcement) due to the presence of an alumina layer on the surface of the aluminum powder particles. In order to achieve fully dense materials and to enhance the thermo-mechanical properties of the Al/C composite materials, a semi-liquid method has been carried out with the addition of a small amount of Al-Si alloys in the Al matrix. Thermal conductivity and coefficient of thermal expansion were enhanced as compared with Al/C composites without Al-Si alloys and the experimental values were close to the ones predicted by analytical models.


2013 ◽  
Vol 22 (4) ◽  
pp. 096369351302200 ◽  
Author(s):  
Necat Altinkök

In this study, initially Al2O3/SiC powder mix was prepared by reacting of aqueous solution of aluminium sulphate, ammonium sulphate and water containing SiC particles at 1200°C. 10 wt% of this hybrid ceramic powder with different sized SiC particles was added to a liquid Al matrix alloy during mechanical stirring between solidus and liqudus under inert conditions. Then hybrid Metal Matrix Composites (MMCs) was produced. The effect of reinforced particle size on tensile strength, bending strength, hardness resistance and wear resistance properties of hybrid reinforced MMCs were investigated. The mechanical test results revealed that bending, tensile strength and hardness resistance of the composites increased with decrease in ductility, with decrease size of the reinforcing SiC particulates in the aluminium alloy metal matrix. The wear behaviour of the hybrid ceramic reinforced aluminium matrix composites was investigated using pin-on-disc test at room temperature under dry conditions. Wear tests showed that the wear resistance of MMCs increased with increasing reinforced Al2O3/SiC particle size. Comparing the fine particle size MMCs with the coarse particle size MMCs were easily pulled out whole from the matrix. Microstructural examination showed that as well as coarse SiC particle reinforcement, a fine alumina particle reinforcement phase was observed within the aluminium matrix (A332).


Sign in / Sign up

Export Citation Format

Share Document