Potassium Bromide as Space Holder for Titanium Foam Preparation

2013 ◽  
Vol 465-466 ◽  
pp. 922-926 ◽  
Author(s):  
Fazimah Mat Noor ◽  
M.I.M. Zain ◽  
K.R. Jamaludin ◽  
R. Hussin ◽  
Z. Kamdi ◽  
...  

Titanium (Ti) alloy foam was prepared by using potassium bromide (KBr) as space holder with percentage between 20 to 40 wt.%. In this work, the potential of KBr as a new space holder was determined. The Ti alloy powder and space holder were first manually mixed before being compacted using hydraulic hand press. The green compacts were then sintered at temperature of 1160°C, 1200°C and 1240°C in a tube furnace. The microstructure of the Ti alloy foams were observed by Scanning Electron Microscope (SEM). It was revealed that the porosity content in the Ti foam was in the range of 16% to 31% and density in the range of 1.5 g/cm3 to 2.6 g/cm3. Moreover, the pore size of the titanium alloy foam is in the range of 187μm to 303μm. Although the sintering temperatures were found incapable of promoting overall densification to the Ti alloy foam, 1200°C was denoted to be the maximal temperature for promoting maximal porosity to the Ti alloy foam. Nonetheless, KBr was proven to be suitable as space holder for Ti foam preparation as referred to its stability and insolubility in the Ti alloy.

1972 ◽  
Vol 26 (2) ◽  
pp. 247-251 ◽  
Author(s):  
William P. Norris ◽  
Allen L. Olsen ◽  
Richard G. Brophy

The monomolecular layer of water adsorbed on KBr particles is responsible for clouding of disks pressed from finely ground powder. Cloudiness is caused by formation of a multitude of cracks in the disk. The initial cracking can be observed with a low power optical microscope and the extensive cracking in the fully cloudy region is observable with a scanning electron microscope. It is suggested that adsorbed water promotes recrystallization, generating weak zones in the workhardened, elastically stressed disk which fails by cracking.


2018 ◽  
Vol 941 ◽  
pp. 1132-1136
Author(s):  
Dalibor Preisler ◽  
Josef Stráský ◽  
Petr Harcuba ◽  
Kristýna Halmešová ◽  
Miloš Janeček

Metastable β-Ti alloy Ti-35.3Nb-7.3Zr-5.7Ta-0.7O (wt. %) shows properties desirable for use as an implant material. However, very large grains (with the size of 0.5 – 3 mm) negatively affect the strength and fatigue resistance. Combination of cold-swaging and recrystallization annealing is used to refine the microstructure. Microstructure after cold swaging and after annealing is studied using scanning electron microscope by electron back-scatter diffraction measurements. Grain size and texture is determined and homogeneity of deformation inside the grains is discussed. Microhardness maps are measured in the cold-swaged samples. It is found that microhardness and thus also the deformation is higher in the center of each rod however the grains retain their original size. Annealing leads to recrystallization that is complete or nearly complete at the temperatures of 1000°C and more. Annealing at 1000°C for 15 min yields grain size of around 100 μm. This grain size is believed to increase the fatigue performance to satisfactory values.


2011 ◽  
Vol 18 (03n04) ◽  
pp. 103-108 ◽  
Author(s):  
JIANING LI ◽  
CHUANZHONG CHEN ◽  
CUIFANG ZHANG

Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2 , leading to the formations of Ti3Al and B . This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.


2019 ◽  
Vol 26 (08) ◽  
pp. 1950047
Author(s):  
JIANING LI ◽  
MOLIN SU ◽  
LIWEI ZHANG

The composites were obtained by the argon-arc cladding (AAC) of the Deloro22-Si3N4-Fe pre-placed powders on a TA1 titanium alloy substrate, which improved the wear resistance of the substrate. Such composites were investigated by means of the scanning electron microscope (SEM), the microscope and the high resolution transmission electron microscope (HRTEM). The results indicated that the amorphous phases were produced in such AAC composites, increasing the wear resistance. With addition of Y2O3, lots of the micro/nanoscale particles were formed, which further improved the wear resistance of such AAC composites.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4332
Author(s):  
Haiyang Jiang ◽  
Jianyang Zhang ◽  
Bijun Xie ◽  
Zhangxun He ◽  
Hao Zhang ◽  
...  

The impact toughness of a TA31 titanium alloy cylindrical shell was investigated systemically after ring rolling. The impact toughness of specimens with different notch orientations shows obvious anisotropy. The microstructure of the cylindrical shell and the impact fracture were characterized by an optical microscope and scanning electron microscope. The results show that cracks are easier to propagate in the equiaxed α phase than the elongated α phase. This is because the expanding cracking path in the equiaxed α phase is shorter than that in the elongated α phase, and thereby the cracks are easier to propagate in the equiaxed α phase than the elongated α phase. More specifically, the α phase on the RD-TD plane was obviously isotropic, which makes it easy for the cracks to propagate along α grains in the same direction. However, the α phase on the RD-ND plane has a layered characteristic, and the direction of the α phase varies from layer to layer, thus it requires higher energy for cracks to propagate across this layered α phase. Therefore, the cracks propagating in the same α phase orientation take easier than that in the layered α phase, so it has lower impact toughness.


2016 ◽  
Vol 22 (1) ◽  
pp. 52 ◽  
Author(s):  
Jaroslav Kovacik ◽  
Peter Baksa ◽  
Štefan Emmer

<p class="AMSmaintext">The electro spark deposition (ESD) method was used to create hard wear resistant layers of TiB<sub>2</sub> ceramic onto Ti6Al4V titanium alloy. Various deposition parameters and ways and condition of deposition were employed in this study. It was showed that the TiB<sub>2</sub> layer on Ti6Al4Vcan be successfully created even using hand operating ESD equipment. Then, the microstructures of the obtained layers TiB<sub>2</sub> layer on Ti6Al4Vwere investigated using scanning electron microscope. Finally optimal conditions of the electro spark deposition were determined with respect to the obtained microstructure. It was also demonstrated that using of protective argon atmosphere is vital for creation of pore free TiB<sub>2</sub> ceramic layer on Ti6Al4V titanium alloy.</p>


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Sign in / Sign up

Export Citation Format

Share Document