Preparation and Characterization of Corn Starch-Nanodiamond Composite Films

2013 ◽  
Vol 469 ◽  
pp. 156-161 ◽  
Author(s):  
Hong Pan ◽  
Dan Xu ◽  
Qin Liu ◽  
Hui Qing Ren ◽  
Min Zhou

Starch-based nanocomposite films were fabricated by the incorporation of different amounts of nanodiamond (ND) particles. These films were characterized by SEM, FT-IR, TGA, tensile testing and water vapor permeability measurement. It was observed that at low loadings, ND dispersed well in starch matrix. However, as the loading amount increased, aggregates as large as several micrometers appeared. The physical blending of ND with starch didnt change the thermal degradation mechanisms of starch films, only increased the char residues. As the ND loading increased, the tensile strength of composite films increased but the elongation at break decreased. However, the water vapor permeability increased as the loading of ND increased due to the increased microspores in films. With further modifications, ND may be considered as a novel of biocompatible nanofillers for reinforcement of biopolymers for food packaging applications.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 219
Author(s):  
Yining Wang ◽  
Jinhui Li ◽  
Xin Guo ◽  
Haisong Wang ◽  
Fang Qian ◽  
...  

Poor water-vapor barriers and mechanical properties are common problems of biobased films. To maintain food quality, the barrier and its strength performance need to be improved. Tea polyphenols (TP) are a natural active substance, and their benzene ring structure provides a barrier for them as a film material. Films that incorporate TP also have enriched functionalities, e.g., as antioxidants. Here, active poly (vinyl alcohol) (PVA)-hemicellulose (HC)/TP films with good moisture resistance and antioxidant capacity were prepared via ultrasound assistance. The effects of TP incorporation and ultrasonication on the physical, antioxidant, and micromorphological properties of the films were investigated. Results showed that the addition of TP improved the thermal stability and water-vapor permeability (WVP) of the composite films. When a PVA-HC/TP composite film with a PVA-HC to TP mass ratio of 100:10 was treated with ultrasonication for 45 min, tensile strength was 25.61 Mpa, which was increased by 54% from the film without any treatment, and water-vapor permeability (WVP) value declined from 49% to 4.29 × 10−12 g·cm/cm2·s·Pa. More importantly, the films’ DPPH scavenging activity increased to the maximal levels of 85.45%. In short, these observations create a feasible strategy for preparing high-performance biodegradable active-packaging films.


2020 ◽  
Vol 12 (8) ◽  
pp. 1213-1224
Author(s):  
Ya-Yu Li ◽  
Wei-Wen Jing ◽  
Jian-Hua Wang ◽  
Jun-Fang Li

Cellulose nanocrystals (CNCs) are promising polymer reinforcements owning to their biocompatibility and high elastic modulus, low density, nano size, and inherent biocompatibility. The waterborne polyurethane-cellulose nanocrystals (WPU-CNCs) nanocomposite films were prepared using the conventional solvent casting technique over a whole composition. The mechanical performance, optical transmittance, amphiphilicity, water vapor permeability (WVP), and oxygen permeability (OP) of these WPU-CNCs films were evaluated. The incorporation of CNCs into WPU resulted in a significant enhancement of Young's modulus and tensile strength. The WVP of nanocomposite films had a lowest value at CNCs content of 50 wt.%. Upon the increase of CNCs content from 0 to 90 wt.%, the transmission path of oxygen molecular through the nanocomposite films became more tortuous, leading to drastic decrease in the OP. These WPU-CNCs nanocomposite films with high strength, optical transparency, water vapor and oxygen barrier properties have the potential applications in biomedical, furniture coating, and food packaging fields.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2279
Author(s):  
Darrel S. Naidu ◽  
Maya J. John

In this study, xylan–alginate-based films were reinforced with nanoclays (bentonite or halloysite) by the solvent casting technique. The effect of the nanoclay loadings (1–5 wt %) on various properties—mechanical, optical, thermal, solubility, water sorption, and water vapor permeability (WVP)—of the xylan–alginate films were examined for their application as food packaging materials. A 5 wt % loading of either bentonite or halloysite resulted in a 49% decrease of the WVP due to the impermeable nature of the silicate layers that make up both bentonite and halloysite. Thermal stability and solubility of the nanocomposite films were not significantly influenced by the presence of the nanoclays, whereas the optical properties were significantly improved when compared to neat xylan–alginate blend. In general, films reinforced with bentonite exhibited superior mechanical and optical properties when compared to both halloysite-based nanocomposite and neat films.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2339
Author(s):  
Zhichao Yang ◽  
Chaoyi Shen ◽  
Yucheng Zou ◽  
Di Wu ◽  
Hui Zhang ◽  
...  

Gelatin (GA) is a natural protein widely used in food packaging, but its fabricated fibrous film has the defects of a high tendency to swell and inferior mechanical properties. In this work, a novel spinning technique, solution blow spinning (SBS), was used for the rapid fabrication of nanofiber materials; meanwhile, nylon 66 (PA66) was used to improve the mechanical properties and the ability to resist dissolution of gelatin films. Morphology observations show that GA/PA66 composite films had nano-diameter from 172.3 to 322.1 nm. Fourier transform infrared spectroscopy and X-ray indicate that GA and PA66 had strong interaction by hydrogen bonding. Mechanical tests show the elongation at break of the composite film increased substantially from 7.98% to 30.36%, and the tensile strength of the composite film increased from 0.03 MPa up to 1.42 MPa, which indicate that the composite films had the highest mechanical strength. Water vapor permeability analysis shows lower water vapor permeability of 9.93 g mm/m2 h kPa, indicates that GA/PA66 film’s water vapor barrier performance was improved. Solvent resistance analysis indicates that PA66 could effectively improve the ability of GA to resist dissolution. This work indicates that SBS has great promise for rapid preparation of nanofibrous film for food packaging, and PA66 can be applied to the modification of gelatin film.


2021 ◽  
Author(s):  
Ya-Yu Li ◽  
Yan-Ru Bai ◽  
Xin-Qian Zhang ◽  
Xin Liu ◽  
Zhen Dai ◽  
...  

Abstract Three kinds of cellulose nanocrystals (CNCs) were added into waterborne polyurethane (WPU), and nanocomposite films were prepared by solution casting method. The influence of different ionic function groups on microstructure and properties of composite films was investigated, and interaction mechanism between these two components was analyzed. Results show that thermal stability of these composite films are improved by 15℃. Compared with sulfated CNCs (SCNCs) and TEMPO oxidized CNCs (TOCNCs), FE-SEM results prove that cationized CNCs (CaCNCs) have better dispersion in composite films. In addition, fracture surface did not display large cavities, which indicates the interface binding force between WPU and CaCNCs is stronger. The tensile strength and fracture work of CaCNC/WPU composite film increase by 11.9% and by 8.4%, respectively. The oxygen permeability of CaCNC/WPU composite film is the lowest in these composite films, which is 5.00 cm3•cm (cm2•s•Pa)-1. Water vapor permeability of composite films may have a close positive correlation with their hygroscopicity. In all, composite film with CaCNCs has optimal strength, toughness, light transmittance and oxygen barrier properties. There may be opposite ion attraction superimposed hydrogen bond between CaCNCs and WPU in the composite film. The composite films are expected to have applications in food packaging, furniture coatings and biomedical applications.


2021 ◽  
Vol 1021 ◽  
pp. 280-289
Author(s):  
Abdulkader M. Alakrach ◽  
Awad A. Al-Rashdi ◽  
Mohamed Khalid Al-Omar ◽  
Taha M. Jassam ◽  
Sam Sung Ting ◽  
...  

In this study, PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films were fabricated via solution casting method. By testing the film density, solubility, water contact angle and water vapor permeability, the PLA nanocomposite films, the comprehensive performances of the nanocomposites were analysed. The outcomes demonstrated that maximum film density of PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films increased gradually with the increasing of nanofiller loadings. Moreover, the incorporation of TiO2 and HNTs-TiO2 significantly decreased the water vapor transmittance rate of the nanocomposite films with a slight priority to the addition of HNTs-TiO2, the water solubility was significantly improved with the addition of both nanofillers. Furthermore, the barrier properties were developed with the addition of both TiO2 and HNTs-TiO2 especially after the addition of low nanofiller loadings. Overall, the performance of the PLA/HNTs-TiO2 nanocomposite films was better than that PLA/TiO2 film. Nevertheless, both of the PLA nanocomposite samples achieved the requests of food packaging applications.


Author(s):  
Viviane Machado Azevedo ◽  
Ana Carolina Salgado De Oliveira ◽  
Soraia Vilela Borges ◽  
Josiane Callegaro Raguzzoni ◽  
Marali Vilela Dias ◽  
...  

Abstract: Studies have been made to explore the utilization of pea proteins in terms of edible film and coating materials. The reinforcement of biopolymer films with plant-based nanocrystals has been applied in order to improve their performance properties. The objective was to evaluate the effect of the incorporation of corn starch nanocrystals (SN) (0-15%) in pea protein isolate films. Thermal analysis showed that the addition of up to 5% starch nanocrystals increased thermal stability. A 22.3% decrease was observed in water vapor permeability with the addition of SN. Increasing the SN concentration altered the arrangement of the structure to interleaved, in the matrix, as seen in transmission micrographs. This study showed that the use of corn starch nanocrystals as reinforcement in pea protein films had an effect on the films. The incorporation of up to 10% SN is suggested in order to increase the performance properties of pea protein isolate films.


Author(s):  
Jie Liu ◽  
Yanchun Liu ◽  
Eleanor M. Brown ◽  
Zhengxin Ma ◽  
Cheng-Kung Liu

The leather industry generates considerable amounts of solid waste and raises many environmental concerns during its disposal. The presence of collagen in these wastes provides a potential protein source for the fabrication of bio-based value-added products. Herein, a novel composite film was fabricated by incorporating vegetable-tanned collagen fiber (VCF), a mechanically ground powder-like leather waste, into a chitosan matrix and crosslinked with genipin. The obtained composite film showed a compact structure and the hydrogen bonding interactions were confirmed by FTIR analysis, indicating a good compatibility between chitosan and VCF. The optical properties, water absorption capacity, thermal stability, water vapor permeability and mechanical properties of the composite films were characterized. The incorporation of VCF into chitosan led to significant decreases in opacity and solubility of the films. At the same time, the mechanical properties, water vapor permeability and thermal stability of the films were improved. The composite film exhibited antibacterial activity against food-borne pathogens. Results from this research indicated the potential of the genipin-crosslinked chitosan/VCF composites for applications in antimicrobial packaging. 


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1606
Author(s):  
Peng Yin ◽  
Jinglong Liu ◽  
Wen Zhou ◽  
Panxin Li

To improve the functional properties of starch-based films, chitin (CH) was prepared from shrimp shell powder and incorporated into corn starch (CS) matrix. Before blending, maleic anhydride (MA) was introduced as a cross-linker. Composite CS/MA-CH films were obtained by casting-evaporation approach. Mechanical property estimation showed that addition of 0–7 wt % MA-CH improved the tensile strength of starch films from 3.89 MPa to 9.32 MPa. Elongation at break of the films decreased with the addition of MA-CH, but the decrease was obviously reduced than previous studies. Morphology analysis revealed that MA-CH homogeneously dispersed in starch matrix and no cracks were found in the CS/MA-CH films. Incorporation of MA-CH decreased the water vapor permeability of starch films. The water uptake of the films was reduced when the dosage of MA-CH was below 5 wt %. Water contact angles of the starch films increased from 22° to 86° with 9 wt % MA-CH incorporation. Besides, the composite films showed better inhibition effect against Escherichia coli and Staphylococcus aureus than pure starch films.


Sign in / Sign up

Export Citation Format

Share Document