Numerical Simulation Analysis on Stability of Coal Pillar of Empty Mine Goaf in North of Shanxi Province

2013 ◽  
Vol 470 ◽  
pp. 205-210
Author(s):  
Hao Tang ◽  
Zi Guang He ◽  
Hai Bo Lian

The analysis model of coal pillar of a empty mine goaf in north of Shanxi province was constructed and the process of coal pillar from formation to weathering was simulated through the application of software of FLAC3D in this article. The stressstrain and the law of plasticity transformation of coal pillar from formation to weathering were analyzed and the long-term stability of coal pillar was forecasted. The result showed that the stability of coal pillar was bad for excessive excavated and weathering and the coal pillar will be broken easier for pressure and shear.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xiaohui Liu ◽  
Jianqing Jia ◽  
Yibo Zhang

The global warming will lead to rising temperature in Tibetan plateau which will cause some trouble to the long-term stability of frozen soil roadbed. Of course, the temperature is the most important to stability analysis and study of frozen soil roadbed. In this paper, taking the frozen soil roadbed in Tibetan plateau as an example, the numerical simulation model is established. Firstly, the characteristics of temperature fields of frozen soil roadbed in the future 50 years are analyzed, and then the vertical and horizontal displacements without load and under dynamic load are analyzed.


2013 ◽  
Vol 23 (11) ◽  
pp. 2129-2154 ◽  
Author(s):  
HÉLÈNE BARUCQ ◽  
JULIEN DIAZ ◽  
VÉRONIQUE DUPRAT

This work deals with the stability analysis of a one-parameter family of Absorbing Boundary Conditions (ABC) that have been derived for the acoustic wave equation. We tackle the problem of long-term stability of the wave field both at the continuous and the numerical levels. We first define a function of energy and show that it is decreasing in time. Its discrete form is also decreasing under a Courant–Friedrichs–Lewy (CFL) condition that does not depend on the ABC. Moreover, the decay rate of the continuous energy can be determined: it is exponential if the computational domain is star-shaped and this property can be illustrated numerically.


1995 ◽  
Vol 377 ◽  
Author(s):  
Mohan K. Bhan

ABSTRACTWe have systematically investigated the effects of addition of sub-ppm levels of boron on the stability of a-Si:H films and p-i-n devices, deposited by PE-CVD technique. The films thus produced with appropriate amounts of boron, show a significant improvement in stability, when soaked under both AM 1.5 (short-term) as well as 10×sun (long-term) illumination conditions. The opto-electronic properties of the films are quite respectable It is concluded that boron compensates the native impurities by forming donor-acceptor pairs, which reduces the “fast” defects and hence the initial degradation of the films. It is also speculated that boron may also be improving the short-term stability, by reducing the recombination of light generated electrons and holes, by converting D° into D+ states. The long-term stability appears to get affected by hydrogen dilution which seems to reduce the amount of “slow” defects. As a result of B doping of i-layer, the initial conversion efficiency of the devices decreases. It is presumed that our devices may contain an enhanced level of boron impurity, than expected, making them as worse material and to degrade less.


2018 ◽  
Vol 3 (3) ◽  
pp. 143-151
Author(s):  
Sophie Huvelle ◽  
Marie Godet ◽  
Laurence Galanti ◽  
Mélanie Closset ◽  
Benoît Bihin ◽  
...  

AbstractBackgroundPiperacillin-Tazobactam is frequently infused in hospitals. The use of a generic version was considered after the out of stock of the brand name Tazocin®. The stability of 4 g of Tazocin®in 120 mL of dextrose 5 % (D5) was demonstrated during 35 days at 5 °C ± 3 °C after freezing (−20 °C) and microwave thawing (FMT). The aim of the study was to investigate and compare the long-term stability of Tazocin®and a generic product in the same conditions.MethodsFive polyolefin bags of 4 g of Piperacillin/Tazobactam®Sandoz and 5 bags of 4 g of Tazocin®were prepared under aseptic conditions in 120 mL of D5 and stored 3 months at 20 °C then thawed and stored 58 days at 5 ± 3 °C.Spectrophotometric absorbance at different wavelengths, pH measurement, visual and microscopic observations were also performed.The concentrations were measured by HPLC, at 211 nm for tazobactam and 230 nm for piperacilline.ResultsNo significant change in pH values or optic densities, no crystals were detected. The lower confidence limit at 95 % of the concentration for the solutions remains superior to 90 % of the initial concentration until 58 days of storage at 5 ± 3 °C.ConclusionUnder these conditions, 4 g/120 mL of Piperacillin/Tazobactam®Sandoz or Tazocin®in D5 infusion in polyolefin bags remains stable at least for 58 days at 5 ± 3 °C after FMT


2019 ◽  
Vol 55 (3) ◽  
pp. 188-192
Author(s):  
M. L. Colsoul ◽  
A. Breuer ◽  
N. Goderniaux ◽  
J. D. Hecq ◽  
L. Soumoy ◽  
...  

Background and Objective: Infusion containing lorazepam is used by geriatric department to limit anxiety disorders in the elderly. Currently, these infusions are prepared according to demand by the nursing staff, but the preparation in advance in a centralized service could improve quality of preparation and time management. The aim of this study was to investigate the long-term stability of this infusion in polypropylene syringes stored at 5 ± 3°C. Then, results obtained were compared with stability data of lorazepam in syringes stored at room temperature, glass bottles at 5 ± 3°C, and glass bottles at room temperature. Method: Eight syringes and 6 bottles of infusion were prepared by diluting 1 mL lorazepam 4 mg in 23 mL of NaCl 0.9% under aseptic conditions. Five syringes and 3 bottles were stored at 5 ± 3°C and 3 syringes and 3 bottles were stored at room temperature for 30 days. During the storage period, particle appearance or color change were periodically checked by visual and microscope inspection. Turbidity was assessed by measurements of optical density (OD) at 3 wavelengths (350 nm, 410 nm, 550 nm). The stability of pH was also evaluated. The lorazepam concentrations were measured at each time point by high-performance liquid chromatography with ultraviolet detector at 220 nm. Results: Solutions were physically unstable in syringes at 5 ± 3°C after 4 days: crystals and a drop of OD at 350 nm were observed. However, pH was stable. After 2 days, solutions were considered as chemically unstable because a loss of lorazepam concentration higher than 10% was noticed: the lower 1-sided confidence limit at 95% was below 90% of the initial concentration. To assess temperature and polypropylene influence, results were compared with those obtained for syringes at room temperature and bottles at 5 ± 3°C and room temperature. Precipitation, drop of OD at 350 nm, and chemical instability were observed in all conditions. Conclusion: Solutions of lorazepam were unstable after 2 days in syringes at 5 ± 3°C. Preparation in advance appears, therefore, not possible for the clinical use. Storage conditions (temperature and form) do not improve the stability.


2020 ◽  
Author(s):  
Kate Higgins ◽  
Sai Mani Valleti ◽  
Maxim Ziatdinov ◽  
Sergei Kalinin ◽  
Mahshid Ahmadi

<p>Hybrid organic-inorganic perovskites have attracted immense interest as a promising material for the next-generation solar cells; however, issues regarding long-term stability still require further study. Here, we develop automated experimental workflow based on combinatorial synthesis and rapid throughput characterization to explore long-term stability of these materials in ambient conditions, and apply it to four model perovskite systems: MA<sub>x</sub>FA<sub>y</sub>Cs<sub>1-x-y</sub>PbBr<sub>3</sub>, MA<sub>x</sub>FA<sub>y</sub>Cs<sub>1-x-y</sub>PbI<sub>3</sub>, (Cs<sub>x</sub>FA<sub>y</sub>MA<sub>1-x-y</sub>Pb(Br<sub>x+y</sub>I<sub>1-x-y</sub>)<sub>3</sub>) and (Cs<sub>x</sub>MA<sub>y</sub>FA<sub>1-x-y</sub>Pb(I<sub>x+y</sub>Br<sub>1-x-y</sub>)<sub>3</sub>). We also develop a machine learning-based workflow to quantify the evolution of each system as a function of composition based on overall changes in photoluminescence spectra, as well as specific peak positions and intensities. We find the stability dependence on composition to be extremely non-uniform within the composition space, suggesting the presence of potential preferential compositional regions. This proposed workflow is universal and can be applied to other perovskite systems and solution-processable materials. Furthermore, incorporation of experimental optimization methods, e.g., those based on Gaussian Processes, will enable the transition from combinatorial synthesis to guide materials research and optimization.</p>


2016 ◽  
Vol 18 (39) ◽  
pp. 27026-27050 ◽  
Author(s):  
Tingting Xu ◽  
Lixin Chen ◽  
Zhanhu Guo ◽  
Tingli Ma

This review provides a comprehensive overview of the recent strategies aimed at enhancing the long-term stability of perovskite materials and perovskite solar cells (PSCs). It also extensively discusses the stability problem of perovskite materials and PSCs from perspectives of experimental tests and theoretical calculations.


2013 ◽  
Vol 23 (02) ◽  
pp. 1350036 ◽  
Author(s):  
CHRISTOPH LHOTKA ◽  
ALESSANDRA CELLETTI

We study the stability of a vector field associated to a nearly-integrable Hamiltonian dynamical system to which a dissipation is added. Such a system is governed by two parameters, namely the perturbing and dissipative parameters, and it depends on a drift function. Assuming that the frequency of motion satisfies some resonance assumption, we investigate the stability of the dynamics, and precisely the variation of the action variables associated to the conservative model. According to the structure of the vector field, one can find linear and long-term stability times, which are established under smallness conditions of the parameters. We also provide some applications to concrete examples, which exhibit a linear or long-term stability behavior.


2014 ◽  
Vol 580-583 ◽  
pp. 2554-2557
Author(s):  
Hua Jun Xue ◽  
Jun Chen ◽  
Bo Liu ◽  
Jie Kong ◽  
Zhi Jun Hao

The surrounding rock deformation of pedestrian roadway was serious under the influence of the working face. And it has affected the safety and normal use of roadway. To ensure the long-term stability of the pedestrian roadway surrounding rock and increase the coal recovery rate of working face, the paper studied the position of stopping line of 1203 working face by numerical simulation. The results show that setting 115m wide of security coal pillar between 1203 working face and pedestrian roadway that the area of stress concentration near the working face has less effect on the pedestrian roadway could better control the surrounding rock stability of the pedestrian roadway and meet the need of the long-term normal production use. It narrows the width of security coal pillar, increase the coal resources recovery rate and achieve the better economic benefits.


2011 ◽  
Vol 90-93 ◽  
pp. 2073-2079
Author(s):  
Yu Feng Wang ◽  
Zhi Qiang Liu ◽  
Bin Song Jiang

In order to improve the mining benefit of coal resources, Chang Gouyu Coal Mine carried out the technology of mining without coal pillar in steep seam. The key of the technology was to ensure a long-term stability of the cross-entry roadway across the seam. Through the analysis of the nature of steep seam roof and floor rock, and based on the stability analysis and loose circle measured of surrounding rock of crosscut roadway, we brought forward adopting shotcrete rockbolt mesh and U-shaped steel complex support structure system. This complex support system could flex lengthways and compress in radial direction. The entirety integrated with the surrounding rock, and they formed into a whole. Application of the complex support system could effectively control the deformation of the surrounding rock collapse, and maintain the stability of the crosscut.


Sign in / Sign up

Export Citation Format

Share Document