Study on Anti-Freezing Performance of Organic Fluorine Siloxane Nano Coating

2013 ◽  
Vol 475-476 ◽  
pp. 1325-1328
Author(s):  
Dong Bo Guan ◽  
Zhong Yi Cai ◽  
Yang Jiang ◽  
Shou Jun Wang ◽  
Hui An ◽  
...  

a low surface energy coating with a long chain fluorine siloxane is prepared, and the performance in anti-freezing adhesive is studied. It is determined that the optimum proportion of (Heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane (FAS) and SiO2 nanopowder are 1.1% and 1.6%,respectively. the times of coating bear pendulum impact is least in this proportion. the conclusion is that bionic superhydrophobic coating plays a certain guiding role on solving material surface frozen sticky problem.

RSC Advances ◽  
2018 ◽  
Vol 8 (67) ◽  
pp. 38363-38369 ◽  
Author(s):  
Hongbo Xu ◽  
Shulong Bao ◽  
Liuting Gong ◽  
Renping Ma ◽  
Lei Pan ◽  
...  

Traditional superhydrophobic material use depends on two processes: creating a rough structure on a material surface and modifying the rough surface with low surface energy materials.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1128
Author(s):  
Liying Wei ◽  
Tugba D. Caliskan ◽  
Philip J. Brown ◽  
Igor Luzinov

Original perfluoropolyether (PFPE)-based oligomeric polyurethanes (FOPUs) with different macromolecular architecture were synthesized (in one step) as low-surface-energy materials. It is demonstrated that the oligomers, especially the ones terminated with CF3 moieties, can be employed as safer replacements to long-chain perfluoroalkyl substances/additives. The FOPU macromolecules, when added to an engineering thermoplastic (polyethylene terephthalate, PET) film, readily migrate to the film surface and bring significant water and oil repellency to the thermoplastic boundary. The best performing FOPU/PET films have reached the level of oil wettability and surface energy significantly lower than that of polytetrafluoroethylene, a fully perfluorinated polymer. Specifically, the highest level of the repellency is observed with an oligomeric additive, which was made using aromatic diisocyanate as a comonomer and has CF3 end-group. This semicrystalline oligomer has a glass transition temperature (Tg) well above room temperature, and we associate the superiority of the material in achieving low water and oil wettability with its ability to effectively retain CF3 and CF2 moieties in contact with the test wetting liquids.


2017 ◽  
Author(s):  
Weihua Hu ◽  
De-Quan Yang ◽  
Edward Sacher

<p>Superhydrophobic surfaces (SHSs) require a combination of a rough nano- or microscale structured surface topography and a low surface energy. However, its superydrophobicity is easily lost, even under relatively mild mechanical abrasion, when the surface is mechanically weak. Here, we develop a method that significantly increases the mechanical durability of a superhydrophobic surface, by introducing a mesh layer beneath the superhydrophobic layer. The hardness, abrasion distance, flexibility and water-jet impact resistance all increase for the commercially available Ultra-ever Dry superhydrophobic coating. This is attributed to the increased mechanical durability offered by the mesh, whose construction not only increases the porosity of the SHS coating but acts as a third, larger structure, so that the superhydrophobic layer is now composed of a three-level hierarchical structure: the mesh, micropillars and nanoparticles.</p>


2017 ◽  
Author(s):  
Weihua Hu ◽  
De-Quan Yang ◽  
Edward Sacher

<p>Superhydrophobic surfaces (SHSs) require a combination of a rough nano- or microscale structured surface topography and a low surface energy. However, its superydrophobicity is easily lost, even under relatively mild mechanical abrasion, when the surface is mechanically weak. Here, we develop a method that significantly increases the mechanical durability of a superhydrophobic surface, by introducing a mesh layer beneath the superhydrophobic layer. The hardness, abrasion distance, flexibility and water-jet impact resistance all increase for the commercially available Ultra-ever Dry superhydrophobic coating. This is attributed to the increased mechanical durability offered by the mesh, whose construction not only increases the porosity of the SHS coating but acts as a third, larger structure, so that the superhydrophobic layer is now composed of a three-level hierarchical structure: the mesh, micropillars and nanoparticles.</p>


2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractSince the cytocompatibility of carbon nanofibers with respect to neural applications remains largely uninvestigated, the objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers. Carbon fiber substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 200 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Astrocytes (glial scar tissue-forming cells) and pheochromocytoma cells (PC-12; neuronal-like cells) were seeded separately onto the substrates. Results provided the first evidence that astrocytes preferentially adhered on the carbon fiber that had the largest diameter and the lowest surface energy. PC-12 cells exhibited the most neurites on the carbon fiber with nanodimensions and low surface energy. These results may indicate that PC-12 cells prefer nanoscale carbon fibers while astrocytes prefer conventional scale fibers. A composite was formed from poly-carbonate urethane and the 60 nm carbon fiber. Composite substrates were thus formed using different weight percentages of this fiber in the polymer matrix. Increased astrocyte adherence and PC-12 neurite density corresponded to decreasing amounts of the carbon nanofibers in the poly-carbonate urethane matrices. Controlling carbon fiber diameter may be an approach for increasing implant contact with neurons and decreasing scar tissue formation.


2019 ◽  
Vol 1 (2) ◽  
pp. 73-80
Author(s):  
Ilangkumaran M ◽  
Tiruvenkadam N ◽  
Saranya M ◽  
Thulsidharan R

Where is the abrasive or gradual removal of materials at solid surfaces? It is caused due to the interaction between the sliding surface by mechanical action. The abrasive wears can be recognised as scratches or grooves. To enhance the wear resistance suitable nanocoating is applied on the material surface for better tribological properties such as hardness and toughness. Wear resistant nanocoating is used to reduce or eradicate wear to extend the lifetime of the EN8 steel. EN8 is unalloyed medium carbon steel with better mechanical properties than mild steel and also readily machinable in any condition. The nanocoating materials such as Al2O3, TiO2, SiC, ZrO2, WS2, Si3N4 etc., are used to reduce wear and to enhance hardness and toughness on mild steel through various nanocoating techniques. This paper deals with selection of suitable nanocoating material through AHP (Analytical hierarchal process) - a multi-criteria decision-making method.


Polymer ◽  
2021 ◽  
Vol 217 ◽  
pp. 123481
Author(s):  
Zhanhui Gan ◽  
Deyu Kong ◽  
Qianqian Yu ◽  
Yifan Jia ◽  
Xue-Hui Dong ◽  
...  

AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035219
Author(s):  
Ya-Kun Lyu ◽  
Zuo-Tao Ji ◽  
Tao He ◽  
Zhenda Lu ◽  
Weihua Zhang

Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 211
Author(s):  
Hongfeng Li ◽  
Xiangwen Lin ◽  
Hongguang Wang

In order to address water damage of asphalt pavement, reduce the occurrence of water-related potholes, deformation, and other diseases, and improve the performance and service life of the pavement, a nano-TiO2 superhydrophobic coating (PSC) on asphalt pavement was prepared from waterborne polyurethane and nano-TiO2 modified by stearic acid. FT-IR measured stearic acid successfully modified low surface energy substance on the surface of nano-TiO2. The SEM image shows that the PSC has a rough surface structure. The contact angle and rolling angle of the PSC in the contact angle test are 153.5° and 4.7°, respectively. PSC has a super-hydrophobic ability, which can improve the water stability of the asphalt mixture. Although the texture depth and pendulum value have been reduced by 2.5% and 4.4%, respectively, they all comply with the standard requirements. After the abrasion resistance test, the PSC coating still has a certain hydrophobic ability. These results surface PSC coating can effectively reduce water damage on asphalt pavement, and has considerable application value.


2004 ◽  
Vol 37 (2) ◽  
pp. 408-413 ◽  
Author(s):  
L. van Ravenstein ◽  
W. Ming ◽  
R. D. van de Grampel ◽  
R. van der Linde ◽  
G. de With ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document