A Surface Roughness Model in Radial-Mode Abrasive Waterjet Turning for High-Tensile Steels

2013 ◽  
Vol 483 ◽  
pp. 177-181 ◽  
Author(s):  
Wei Yi Li ◽  
Hong Tao Zhu ◽  
Jun Wang ◽  
Chuan Zhen Huang

Abrasive waterjet (AWJ) machining is an emerging machining method to process all kinds of difficult-to-cut materials. In this paper, a mathematical model for the surface roughness generated by a radial-mode AWJ turning process on a high-tensile steel specimen is developed using a dimensional analysis technique. To verify the model, a series of statistically designed experiments are carried out where feed speed, water pressure, abrasive flow rate, nozzle tilt angle, and workpiece surface speed are considered as variables. The model predictions are found to be in good agreement with the experimental results with the average error of 4.3%. Future research to advance the knowledge about this new machining process is also proposed.

Author(s):  
Naresh Babu Munuswamy ◽  
M. Nambi Krishnan

This study investigates optimal parameter setting in abrasive waterjet machining (AWJM) on aluminium alloy AA 6351, using taguchi based Grey Relational Analysis (GRA) is been reported. The water pressure, traverse speed and stand-off-distance were chosen as the process parameters in this study. An L9 orthogonal matrix array is used for the experimental plan. The performance characteristics which include surface roughness (Ra) and kerf angle (KA) are considered. The results indicate that surface roughness and kerf angle decreases, with increase in water pressure and decrease in traverse speed. Analysis of variance (ANOVA) illustrates that traverse speed is the major parameter (89.7%) for reducing surface roughness and kerf angle, followed by water pressure (5.85%) and standoff distance (2%) respectively. The confirmation results reveal that surface roughness reduced by 16% and kerf angle reduced by 47%. Furthermore, the surfaces were examined under scanning electron microscope (SEM) and atomic force microscope (AFM) for a detailed study


2011 ◽  
Vol 697-698 ◽  
pp. 166-170 ◽  
Author(s):  
W.Y. Li ◽  
Jun Wang ◽  
Yasser M. Ali

An experimental study of a radial-mode abrasive waterjet (AWJ) turning of AISI4340 high tensile steel is presented. The major process parameters, i.e. feed speed, waterjet pressure, abrasive flow rate, nozzle tilt angle, and workpiece surface speed, are considered in a statistical experimental design. The advantages of the radial-mode AWJ turning over the offset-mode turning include maximum jet energy utilization, high surface speed, a variety of nozzle tilt angles and small nozzle standoff distance, to enable high material removal rate (MRR). It is found that the depth of cut is considerably increased when large nozzle tilt angle and high surface speed are used. It also shows that feed speed and waterjet pressure are the two most significant parameters to control the MRR. This preliminary study suggests that the radial-mode AWJ turning is feasible and can yield high material removal rates. Future research to advance the knowledge about this new machining process is also proposed.


2013 ◽  
Vol 797 ◽  
pp. 27-32
Author(s):  
Zhong Bo Yue ◽  
Chuan Zhen Huang ◽  
Hong Tao Zhu ◽  
Jun Wang ◽  
Peng Yao ◽  
...  

A study on the radial-mode abrasive waterjet turning (AWJT) process is presented and discussed. An experimental investigation is carried out to explore the influence of process parameters on the depth of turning and material removal rate (MRR) when turning 96% alumina ceramics. The experiment is designed by the multifactor orthogonal experiment methods. The effect of feed speed, water pressure, abrasive mass flow rate, nozzle tilted angle and surface speed are investigated by the range analysis and variance analysis. The results show that the feed speed is the most significant variables affecting the depth of turning. Based on the test conditions, it is found that the most efficient conditions to maximize depth of turning are at a jet angle of 105 degree, a water pressure of 310MPa, an abrasive mass flow rate of 11.5 g/s, a surface speed of 5.5m/s and a feed speed of 0.05mm/s. At last, the effect mechanism of process variables on the depth of turning is analyzed qualitatively.


2013 ◽  
Vol 797 ◽  
pp. 9-14 ◽  
Author(s):  
Mirza Ahmed Ali ◽  
Jing Ming Fan ◽  
Hong Tao Zhu ◽  
Jun Wang

A visualization study of the radial-mode abrasive waterjet (AWJ) turning process on an alumina ceramic is presented to gain an understanding of cutting front development process and hence the material removal mechanisms. A statistically designed experiment is conducted to study the effects of process parameters on the development of the cutting front, considering the change of water pressure, nozzle feed speed and nozzle tilt angle. It is found that the most significant parameters affecting the cutting front development are feed speed and water pressure. Further, the actual jet impact angle is dependent on both the water pressure and feed speed, but at higher water pressures the actual impact angle tends to become independent of feed speed, while water pressure becomes the dominating factor.


Author(s):  
Barath M ◽  
◽  
Rajesh S ◽  
Duraimurugan P ◽  
◽  
...  

The abrasive mixed waterjet was with success utilized to chop several materials together with steel, metal and glass for a spread of business applications. This work focuses on surface roughness of hybrid metal matrix composite (AA6061, Al2O3, B4C). Machining was applied by AWJM (Abrasive Waterjet Cutting) at completely different parameters Water pressure, Traverse speed, Abrasive flow and stand-off distance. The reinforced composite was analyzed exploitation FE SEM (Field Emission Scanning lepton Microscope) and distribution of reinforced was studied by AFM (Atomic Force Microscopy). For optimum results surface roughness was calculated.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.


2020 ◽  
pp. 096739112090905
Author(s):  
Kuppuraj Arunkumar ◽  
Angamuthu Murugarajan

Natural-fibre reinforced composite material is an emerging material that has great potential to be used in various industrial aspects and applications. The cotton-viscose-reinforced composite is prepared using a compression moulding process. In addition to it, analysis of its mechanical properties was also carried out, such as tensile strength, flexural strength, impact strength and hardness. An attempt was made to process the prepared composite material using abrasive water jet machining (AWJM) under different process parameters (water pressure, nozzle transfer speed and abrasive flow rate) levels to determine the better suitable process conditions to achieve the better surface finish and optimize the machining process. The significance of the optimization process was ensured using the results of the analysis of variance. Morphological analyses of the machined surface were performed using a scanning electron microscope. The surface roughness of 8.28 µm was found to be the optimized process parameter. Optimum process parameters in AWJM are used to improve the surface quality.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Puneet Kumar ◽  
Bhavik Tank ◽  
Ravi Kant

Abrasive water jet machining (AWJM) is one of the most developed non-traditional machining processes. It is generally used to cut difficult to cut materials like composites. The present study is focused on machining of carbon fiber vinyl ester composite with AWJM. The effect of process parameters namely water pressure, standoff distance and traverse speed on surface roughness and kerf tapper is studied. Design of experiment is done by using Taguchi L16 orthogonal array. It is observed that water pressure is the most significant parameter followed by traverse speed. It is found that with the increase in water pressure and decrease in traverse speed of AWJM, surface roughness and kerf tapper of machined samples decreases.


Author(s):  
Takayuki Nakamura ◽  
Kohei Ichikawa ◽  
Masanobu Hasegawa ◽  
Jun'ichi Kaneko ◽  
Takeyuki Abe

Abstract In recent machining processes, 5-axis controlled machine tool is widely used for machining complicated workpiece shape with curved surface. In such process, to achieve high productivity, planning method of cutting conditions to satisfy both following the commanded tool feed rate in machining process and realization of good surface roughness are required. In conventional study, it is known that lead angle of tool posture against local machined surface influence the surface roughness. Then, common commercial CAM systems have already functioned to avoid interference and control the lead angle in each cutter location. However, in the generated cutter locations by the conventional algorithms, when the tool posture changes rapidly, there is a problem that actual feed rate does not reach the command value and machining time becomes longer than expected. In this paper, we propose the new tool posture correction algorithm. In the proposed method, first, the rotational axis that causes the feed speed rate decline is specified by preliminary experiments. And, the jerk value that is the threshold for the feed speed decline is investigated. After that, for the NC program, the command value of the target axis is modified within a range where interference of cutting tool does not occur, thereby preventing a decline in the actual feed rate. This paper describes an outline of the proposed modification method and the effect of the modification of the target axis positions on the lead angle and the actual feed rate.


Sign in / Sign up

Export Citation Format

Share Document