Modified HHT Method for Vehicle Vibration Analysis in Time Domain Utilisation

2013 ◽  
Vol 486 ◽  
pp. 396-405 ◽  
Author(s):  
Juraj Gerlici ◽  
Tomáš Lack

The analysis of mechanical systems (for example the mechanical systems of vehicles) vibration is permanently very topical. The vehicle dynamical properties are determined with the help of this analysis during a new vehicle design, or renewal of an older existing vehicle. The Eigen frequencies are characteristic for a vehicle construction. A vehicle mechanical system is excited with various types of loads in the operation and this is the reason why its individual parts oscillate. The aim of a dynamical analysis is not only to judge the influence of an excitation on the mechanical system, but also on the base of that analysis, to propose and to perform the construction changes of a vehicle for the detected negative state elimination or improvement.

2020 ◽  
Vol 66 (10) ◽  
pp. 557-566
Author(s):  
Filippo Cianetti

Fatigue damage and, in general, fatigue behaviour is not simple to observe or estimate during the operational life of a generic vibrating mechanical system. There are a lot of theoretical or numerical methods that allow to evaluate it or by knowing a priori the loading conditions and obtaining output stress states by adopting numerical models of the mechanical system or by directly experimentally measuring and acquiring stress/strain states. A few examples of instruments (e.g. rain flow recorders) or measurement chains dedicated to estimate it in time domain or frequency domain are found in the literature but none that fully both observes the system dynamic behaviour and estimates the related actualized cumulated damage, and, thus, none that can estimate the residual life of the system itself. In this paper, a simple time-domain method, designed to monitor the instantaneous fatigue behaviour by definition of the instantaneous and cumulated potential damage or of equivalent damage signal amplitude is presented, based on rain-flow counting method and a damage linear cumulation law and starting from system dynamics signals. This methodology was designed to overestimate real damage to alert the system manager before any crack starts and to be simply translated into electronic boards that can be mounted on generic mechanical systems and linked to one of the sensors that usually monitor system functionality. Keywords: fatigue; damage; rain flow counting; random loads


1995 ◽  
Vol 117 (B) ◽  
pp. 63-70 ◽  
Author(s):  
E. J. Haug ◽  
K. K. Choi ◽  
J. G. Kuhl ◽  
J. D. Wargo

Developments in simulation technology that enable a qualitatively new virtual prototyping approach to design of mechanical systems are summarized and their integration into an engineering design environment is illustrated. Simulation tools and their enabling technologies are presented in the context of vehicle design, with references to the literature provided. Their implementation for design representation, real-time driver-in-the-loop simulation, dynamic performance simulation, dynamic stress and life prediction, maintainability analysis, design sensitivity analysis, and design optimization is outlined. A testbed comprised of computer aided engineering tools and a design level of fidelity driving simulator that has been developed to demonstrate the feasibility of virtual prototyping simulation for mechanical system design is presented. Two 1994 demonstrations of this capability for vehicle design are presented, to illustrate the state of the technology and to identify challenges that remain in making virtual prototyping simulation an integral part of mechanical system design in US industry.


2012 ◽  
Vol 463-464 ◽  
pp. 1304-1308 ◽  
Author(s):  
Ionut Geonea ◽  
Alexandru Margine ◽  
Alin Ungureanu

The paper illustrates the structure of plane mechanical systems used to manipulators. In the first part are presented some kinematics schemes used to plane manipulators. These mechanisms are used to manipulators, positioning and control systems. In generally these mechanisms have two or three degree of mobility. The purpose of the paper is to study the dynamics of a plane manipulator mechanical system used to manipulate garbage containers. It is presented the kinematics scheme of a plane manipulator, used to this purpose and is presented the mechanism functional description. In the second part is presented the kinematical and dynamical analysis for the plane manipulator mechanism. In the last part of the paper are presented graphical results for the dynamics parameters.


Author(s):  
Guri Sharashenidze ◽  
Otar Gelashvili ◽  
Pavle Kurtanidze ◽  
Mamuka Dolidze

The safety movement of rolling stock is depended on the parameters of “carriage-rail” dynamical system as well as on the automatic brake’s reliability. The automatic brake provides the full brake effect at which the brake force transfer to the brake shoes is executed by linkage mechanical system. The linkage mechanical system will transfer the brake force with minimal force losses is characterized by simple structure and reliability operation. Hence the development of such system is very topical and problematic task. Nowadays the brakes systems consist from number of levers therefore are characterized by force great losses in the hinge junctions on the friction overcoming, great material capacity and making costs. In the work are developed perspective passenger car mechanical system, in which are overcoming the noted problems-they have simple structure, better condition for brake and force transfer, minimal economical costs. For brake mechanical systems optimal design due developed in the dynamic model are solved the dynamic analysis tasks. Due the carried out theoretical researches and according computational experiment is achieved the topical task solution. Carried out in the work research is acceptable for other kinds of brake mechanical systems optimization task solution as well as is possible fore application at development and research of arbitrary complexity lever mechanical system.


1995 ◽  
Vol 117 (B) ◽  
pp. 63-70 ◽  
Author(s):  
E. J. Haug ◽  
K. K. Choi ◽  
J. G. Kuhl ◽  
J. D. Wargo

Developments in simulation technology that enable a qualitatively new virtual prototyping approach to design of mechanical systems are summarized and their integration into an engineering design environment is illustrated. Simulation tools and their enabling technologies are presented in the context of vehicle design, with references to the literature provided. Their implementation for design representation, real-time driver-in-the-loop simulation, dynamic performance simulation, dynamic stress and life prediction, maintainability analysis, design sensitivity analysis, and design optimization is outlined. A testbed comprised of computer aided engineering tools and a design level of fidelity driving simulator that has been developed to demonstrate the feasibility of virtual prototyping simulation for mechanical system design is presented. Two 1994 demonstrations of this capability for vehicle design are presented, to illustrate the state of the technology and to identify challenges that remain in making virtual prototyping simulation an integral part of mechanical system design in US industry.


2013 ◽  
Vol 436 ◽  
pp. 166-173
Author(s):  
A. Mihaela Mîţiu ◽  
Daniel Constantin Comeagă ◽  
Octavian G. Donţu

In this paper are presented some aspects of transmissibility control of mechanical systems with 1 DOF so that the effects of vibration on their action to be minimized. Some technical solutions that can be used for this purpose is analyzed. Starting from the mathematical model of an electro-mechanical system with 1 DOF, are identified the parameters which influence the effectiveness of the transmissibility control system using an electrodynamic actuator who work in "closed loop".


2014 ◽  
Vol 555 ◽  
pp. 209-216
Author(s):  
Gheorghe Negru

The paper presents an application of the Kalman filter to achieve the controlled arming of mechanical system embedded into embarked electrical systems (FMES). The solution of FMES which contain mechanical subsystems electronically controlled could significantly reduce the influence, on their functioning, of the general motion of high speed object (HSO) .


2014 ◽  
Vol 657 ◽  
pp. 644-648 ◽  
Author(s):  
Andrzej Dymarek ◽  
Tomasz Dzitkowski

The paper presents the use of synthesis methods to determine the parameters of passive vibration reduction in mechanical systems. Passive vibration reduction in a system is enabled by units called dampers whose values are determined on the basis of the method formulated and formalized by the authors. The essence of the method are, established at the beginning of a task, dynamic characteristics in the form of the resonance and anti-resonance frequencies, and amplitudes of displacement, velocity or acceleration of vibration.


2013 ◽  
Vol 631-632 ◽  
pp. 957-961
Author(s):  
Jian She Peng ◽  
Gang Xie ◽  
Liu Yang ◽  
Yu Quan Yuan

This paper presents a new time-domain DQ (differential quadrature) method for structural vibration analysis. It adopts differential quadrature method both in space domain and in time domain on the basis of governing partial differential equation and initial-boundary value condition of vibration problems of structures, and gets new differential quadrature linear equations with complete initial-boundary value conditions for solving all parameters of the displacement-field. The examples in this paper show the time-domain differential quadrature method is a useful and efficient tool for structural vibration analysis.


Sign in / Sign up

Export Citation Format

Share Document