Development of Acoustic Emission Sensor Based on the 0-3 PZT/P(VDF-TFE) Piezoelectric Composite

2014 ◽  
Vol 487 ◽  
pp. 58-62
Author(s):  
Jun Kang ◽  
Peng Sheng Xie ◽  
Yuan Li ◽  
Jia Lin Zhu ◽  
Li Li

In this paper, we produced the 0-3 PZT/P(VDF-TFE) piezoelectric composite film with 80μm thickness using PZT piezoelectric ceramics and fluorine resin P(VDF-TFE) by weight 85/15 ingredients through the hot rolling machine and corona-discharge method. A sensor with 4cm×1.3cm area is designed and produced by using this film. We have carried out the breaking of a pencil lead pressed against an aluminum plate acoustic emission testing. The result shown that the sensor is with fast response and high sensitivity advantage, the sensor can be used as acoustic emission sensor. Meanwhile the sensor is very easy to use due to it is a soft film sensor.

2011 ◽  
Vol 105-107 ◽  
pp. 2179-2182
Author(s):  
Wei Min Zhang ◽  
Shu Xuan Liu ◽  
Yong Qiu ◽  
Cheng Feng Chen

Crack propagation is the main reason which leads to the invalidity of the metal components. A set of detecting equipment based on the acoustic emission method was designed, and it was mainly composed of acoustic emission sensor, signal operating circuits and signal acquisition system. Specimens of 16MnR material were manufactured and the static axial tension test of them was carried on. Acoustic emission signals from the specimen were detected by acoustic emission equipment by using piezoelectric ceramic sensor. Signal datum were acquired and operated by the acquisition system, as well as the acquisition program written for it. The final results has demonstrated that acoustic emission equipment designed for the test performed well in acquiring the signals induced by the metal crack propagation.


2020 ◽  
pp. 40-44
Author(s):  
V. V. Bardakov ◽  
S. V. Elizarov ◽  
V. A. Barat ◽  
V. G. Kharebov ◽  
K. A. Medvedev

Testing results of power transformers insulation for the presence of insulation defects, accompanied by the partial discharges occurrence, by means of the acoustic emission method are presented in this article. In particular, the testing of two power transformers with different lifetime was carried out. One transformer was defect-free and one with a willing insulation defect. Based on the testing results, the features of acoustic emission data for power transformers in the presence of partial discharges are found. High sensitivity of acoustic emission method for acoustic wave registration from partial discharges is shown in the article. A method for filtering of noise hits and extraction of hits from partial discharges is proposed. This method is based on excretion of acoustic emission hits from partial discharges out of total number of hits by means of periodicity of their registration, which is synchronized with power supply frequency on the first step. On the next step based on acoustic emission parameters of hits excretion on the previous step, filtration was carried out. The location of the insulation defect which led to the appearance of partial discharges was determined based on the volume location algorithm, by means of acoustic emission method. The insulation defect was confirmed by verification.


2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


2006 ◽  
Vol 13-14 ◽  
pp. 195-200
Author(s):  
Athanasios Anastasopoulus ◽  
S. Bousias ◽  
A. Tsimogiannis ◽  
T. Toutountzakis

Acoustic Emission (AE) monitoring was performed during Pseudo-Dynamic Testing of a torsionally unbalanced, two-storey, one-by-one bay reinforced concrete frame structure. The structure represented a 0.7-scale model of a real-size frame structure designed and detailed according to the standards prevailing in Greece in 60's, without engineered earthquake resistance. Real time monitoring of AE activity versus the complex applied load resulted in semi quantitative damage characterization as well as comparative evaluation of the damage evolution of the different size columns. Evolution of the AE energy rate per channel, as revealed from zonal location, and the energy rate of linearly located sources enabled the identification of damage areas and the forecast of crack locations before cracks were visible with naked eye. In addition to that, the results of post processing evaluation allowed for the verification of the witnessed damaged areas and formed the basis for quantitative assessment of damage criticality.


2006 ◽  
Vol 13-14 ◽  
pp. 117-124 ◽  
Author(s):  
James J. Hensman ◽  
C.V. Cristodaro ◽  
Gareth Pierce ◽  
Keith Worden

An acoustic emission test was simulated using a three point bend specimen and an artificial AE source. Waveform data was recorded as the sample was cyclically loaded in three point bending, and the cross correlation coefficient of the waveforms was used to measure the repeatability of the test. Results were twofold: the stress state of a specimen affects the ultrasonic propagation therein; and the coupling condition of a transducer may not remain constant during a test.


Sign in / Sign up

Export Citation Format

Share Document