Study of a Four Rotor Aircraft Modeling

2014 ◽  
Vol 494-495 ◽  
pp. 293-296
Author(s):  
Yang Jin Xian ◽  
Li Zhi Peng ◽  
Chen Chao

In order to design the four rotor aircraft attitude control system, take the hover state or low speed flight state as a benchmark, firstly, divide the aircraft model into linear motion model and the angular motion model and model it separately, the nonlinear mathematical model of aircraft can be obtained. And then use the small disturbance linearization principle to linear mathematical model for a simplified model. After substituting into the previous experimental data, the mathematical model which controller design needs is got.

Author(s):  
Dian-sheng Chen ◽  
Yu-xin Chen ◽  
Tian-miao Wang

In order to let the student understand the linear motion module’ principles and know how to improve the dynamic performance and control accuracy, a mathematical model is established based on the analysis of the composition and working principle of linear motion module. On the load and unload conditions, we simulate and analyze the system respectively. In the load case, PID parameters are obtained after the PID regulation. The correction of establishing the mathematical model and simulating the system are verified so that the linear motion model’ precision is effectively enhanced.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 99
Author(s):  
Azizi Malek ◽  
M F Sedan ◽  
A S M Harithuddin

This paper documents and presents the development of attitude control system of Hybrid Airship Unmanned Aerial Vehicle (HAU) that should be able to change its attitude condition based on the response processed from the provided input. This is accomplished by data acquisition method that retrieves data from a flight controller and processes it into the control system without looking in deep on the mathematical model of the airship. Besides that, PID controller is used in order to create a good stable response for the hybrid airship. A working hybrid airship prototype was successfully developed and built, which is five meters in length and has four propellers that is symmetrically distanced to each other. A quadcopter attitude control mechanism is adopted into the hybrid airship to allow for good hovering capability and direct pure attitude control. Outdoor flight tests have been conducted to prove its stability in responding to attitude input given to the hybrid airship attitude controller. A data monitoring software is also written to make the data observation on the behaviour of the hybrid airship response to be easier and understandable. Result demonstrates that the hybrid airship does response to pitch, roll and yaw input from the operator, albeit the lack response stability and speed which can be improved in conservative continuation of research on the airship attitude control system.  


Author(s):  
Inbal Shani ◽  
Neima Brauner ◽  
Coleman B. Brosilow

IMC controller design for a process is based on choosing a mathematical model that describes the real process. The mathematical model describing such process is often not unique because the real variables of the process can vary within an interval. In such cases the performance of the control system varies, possibly substantially, as process parameters change. To limit such performance variations, we have developed an algorithm for choosing the model gains and the filter time constants of the IMC controller, to minimize the amount of interaction between outputs due to set point changes and disturbances for multivariable decoupled control systems. Some examples illustrate the algorithm.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 9
Author(s):  
Supanna S. Kumar ◽  
C Shreesha ◽  
N K. Philip

This paper presents a robust Proportional Integral Derivative controller design methodology for three axis attitude control of a rigid spacecraft with parametric uncertainty using a combination of Kharitonov theorem and vectored particle swarm optimization based approaches. A controller is designed for each of the three axes using a systematic graphical approach. Here, a plot of the stability boundary loci in the integral gain versus proportional gain parameter plane, for the specified gain and phase margins for each of the Kharitonov interval plants is used to determine the region representing the set of all PID controllers that satisfy the desired performance and stability requirements. Vectored particle swarm optimization technique is used to determine the optimized proportional and integral gain values. The spacecraft attitude control system is simulated using Matlab-Simulink tool which shows that the designed controller provides stability, robustness, good reference pointing and disturbance rejection for perturbations within the specific bounds.  


2015 ◽  
Vol 798 ◽  
pp. 297-302
Author(s):  
Meirbek Moldabekov ◽  
Suleimen Yelubayev ◽  
Kuanysh Alipbayev ◽  
Anna Sukhenko ◽  
Timur Bopeyev ◽  
...  

The problem of development of the microsatellite attitude control system on the base of reaction wheels positioned along its principal central axes of inertia is considered in this article. As difference from the classical mathematical models describing the microsatellite motion, this article includes the mathematical model of reaction wheel which is controlled by the input voltage of the electric motor. PD-controller is used as the basis for the development of the control law for microsatellite attitude. The stability analysis of the microsatellite attitude control process was carried out with the help of Lyapunov function method. This analysis allowed to prove that obtained attitude control law provides the asymptotic stability of the microsatellite rotational motion. Further, the function of control voltage for the reaction wheel’s electric motor with account of its technical specifications was obtained based on the derived mathematical model of the reaction wheel’s dynamics. The results of performed simulation showed the effectiveness of developed control. Obtained results of the study provide a base for the use of presented approach to the development of attitude control system for microsatellites with various missions.


2016 ◽  
Vol 65 (4) ◽  
pp. 855-864 ◽  
Author(s):  
Jacek Mikołajewicz

Abstract This paper presents and discusses the mathematical model of thermal phenomena occurring in axis-symmetric electromechanical linear motion converters. On the basis of the developed model, software to analyze the process of the heating up of this type of converters, was created. The effect of the thickness and type of material of the slot insulation, as well as the speed of the runner on the temperature distribution in the analyzed object was examined in-depth. Selected results of simulated calculations have been presented.


2015 ◽  
Vol 799-800 ◽  
pp. 1011-1015
Author(s):  
Jae Hyun Park ◽  
In Ho Kim ◽  
Woong Hee Cho ◽  
Jung Wan Park ◽  
Hyun Seok Yang

This paper presents a new mechanical design of mobile robot which can travel in the condition of continuous varying environment, such as colon of human body. Especially, the human colon environment contains an intense diameter change. The suggested mechanical design is capable to adapt in wide diameter changing system by generating two basic motions, rotational and linear motion, with a single actuator. Prototypes is fabricated, and tested result is presented in this paper. Also, experimental result is compared with the mathematical model of the mechanism to verify the feasibility of the proposed mechanism.


2018 ◽  
Vol 246 ◽  
pp. 03019
Author(s):  
Yong Ding ◽  
Jiefang Liu

In this paper, the robot (humanoid robot) soccer activity is decomposed according to the process of Human-Robot football professional skill competition. This paper analyzes the shooting problem of robot in the forward range and outside the range of the door frame, applies it to the rotation angle of robot foot, and gives the mathematical model of linear motion through the force of the center of the ball. Then, the further research direction are discussed.


Sign in / Sign up

Export Citation Format

Share Document