Suspension Optimum Design Considering Tire and Vehicle Matching

2014 ◽  
Vol 496-500 ◽  
pp. 617-620
Author(s):  
Fan Bai ◽  
Kong Hui Guo ◽  
Dang Lu

A method of suspension optimum design based on the tire and vehicle matching was introduced in this paper. Firstly, the vehicle handling stability evaluation standards considering tire matching with vehicle were determined by the subjective and objective assessment. Secondly, the quality, suspension kinematics and compliance characteristics and tire mechanics of prototype were tested. The vehicle model of prototype was built in Carsim with the corresponding experiment data. The model was verified by the results of the vehicle handling stability tests. Then a combination simulation platform was developed by making use of Isight, Matlab and Casim. Finally the optimal design of suspension kinematics and compliance characteristics and tire mechanics were conducted, taking straight running performance index, high-speed driving safety index and high-speed cornering performance index as the objective. The simulation results indicated that after optimization, the straight running performance and high-speed cornering performance of prototype could be improved.

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Wang Wei ◽  
Bei Shaoyi ◽  
Yang Hui ◽  
Wang Yongzhi ◽  
Zhang Lanchun

Vehicle driving safety is the urgent key problem to be solved of automobile independent development while encountering emergency collision avoidance with high speed. And it is also the premise and one of the necessary conditions of vehicle active safety. A new technique of vehicle handling inverse dynamics which can evaluate the emergency collision avoidance performance is proposed. Based on optimal control theory, the steering angle input and the traction/brake force imposed by driver are the control variables; the minimum time required to complete the fitting biker line change is the control object. By using the improved direct multiple shooting method, the optimal control problem is converted into a nonlinear programming problem that is then solved by means of the sequential quadratic programming. The simulation results show that the proposed method can solve the vehicle minimum time maneuver problem, and can compare the maneuverability of two different vehicles that complete fitting biker line change with the minimum time and the correctness of the model is verified through real vehicle test.


Author(s):  
Carlos Lago-Peñas ◽  
Anton Kalén ◽  
Miguel Lorenzo-Martinez ◽  
Roberto López-Del Campo ◽  
Ricardo Resta ◽  
...  

This study aimed to evaluate the effects playing position, match location (home or away), quality of opposition (strong or weak), effective playing time (total time minus stoppages), and score-line on physical match performance in professional soccer players using a large-scale analysis. A total of 10,739 individual match observations of outfield players competing in the Spanish La Liga during the 2018–2019 season were recorded using a computerized tracking system (TRACAB, Chyronhego, New York, USA). The players were classified into five positions (central defenders, players = 94; external defenders, players = 82; central midfielders, players = 101; external midfielders, players = 72; and forwards, players = 67) and the following match running performance categories were considered: total distance covered, low-speed running (LSR) distance (0–14 km · h−1), medium-speed running (MSR) distance (14–21 km · h−1), high-speed running (HSR) distance (>21 km · h−1), very HSR (VHSR) distance (21–24 km · h−1), sprint distance (>24 km · h−1) Overall, match running performance was highly dependent on situational variables, especially the score-line condition (winning, drawing, losing). Moreover, the score-line affected players running performance differently depending on their playing position. Losing status increased the total distance and the distance covered at MSR, HSR, VHSR and Sprint by defenders, while attacking players showed the opposite trend. These findings may help coaches and managers to better understand the effects of situational variables on physical performance in La Liga and could be used to develop a model for predicting the physical activity profile in competition.


1983 ◽  
Vol 105 (3) ◽  
pp. 492-497 ◽  
Author(s):  
A. T. Yang ◽  
Sun Zhishang

In this paper we present a dynamic analysis of a general spherical four-link mechanism whose links have arbitrary mass distribution. Results, which are in explicit analytical expressions in terms of inertia-induced forces and moments in links, are useful for optimum design of the mechanism under high-speed operation.


2014 ◽  
Vol 50 (2) ◽  
pp. 765-768 ◽  
Author(s):  
Haijun Zhang ◽  
Weijie Xu ◽  
Shuhong Wang ◽  
Youpeng Huangfu ◽  
Guolin Wang ◽  
...  

2013 ◽  
Vol 295-298 ◽  
pp. 1529-1534
Author(s):  
Long Lin Sun ◽  
Wen Wei Huang ◽  
Mou Rong Gao

The taxies’ emission experiments on urban roads are carried out with a high-precision mobile emission analyzer. Then the emission characteristics are analyzed. The experiment data show that the high speed, the low acceleration and the low VSP will be helpful to decrease the emission and the long mileage will worsen the emission.


2020 ◽  
Vol 12 (7) ◽  
pp. 168781402094047
Author(s):  
He Li ◽  
Yu Wang ◽  
Deen Bai ◽  
Fuyan Lyu ◽  
Kuidong Gao ◽  
...  

As a kind of promising noncontact bearings, ultrasonic bearings actuated by smart materials such as lead zirconate titanate ceramics show a good application prospect in high-speed machines and precision-measuring devices. The suspending force is one of the most important parameters that play a dominated role on the bearing’s static and dynamic performance. A suspending force model based on acoustic radiation theory for cylindrical object near sound source is built to predict the radial carrying capacity of an ultrasonic bearing actuated by three piezoelectric transducers. To validate the model, an ultrasonic bearing prototype is developed and a testing system is established. For observing the bearing’s dynamic running performance at high speeds, the bearing’s running experiment is carried out and the rotor center’s trajectory data and frequency spectrum are acquired to analyze the bearing’s dynamic characteristics at high speeds. The suspending force model and running performance experiments will contribute to the design, detection, and test of this type of bearings.


2018 ◽  
Vol 67 ◽  
pp. 04003
Author(s):  
Yanuar ◽  
Wiwin Sulistyawati ◽  
R. Joshua Yones ◽  
Samodero Mahardika

An optimum design of ship is to achieve the required speed with minimum power requirements. On multihull, sidehull position against to mainhull influences the friction resistance and its stability. Frictional resistance of multi-hull increases due to the addition of wetted surface area of hull, but wave making resistance can be lowered by a slender hull form. This research are experimental tests of trimaran with five Wigley hulls on a combination transom and without transom. The test varied on stagger, clearance and trim at several speeds. A ship with formation arrow tri-hull on forward was given to prove the resistance reduction due to cancellation wave which was indicated by negative interference. The influence diverse position of sidehull has shown that model non-transom (NT) stern moreover give beneficial resistance than model with transom (WT) at high speed. Similarly, in the trim conditions that NT more favorable on trim specifically for high speed depending on the position of the sidehull to the mainhull.


Sign in / Sign up

Export Citation Format

Share Document