Seismic Performance Investigation of Different Kinds of Shear Walls

2014 ◽  
Vol 501-504 ◽  
pp. 1615-1618
Author(s):  
Pin Le Zhang

Shear wall systems are the most commonly used lateral load resisting systems in high seismic zones because they provide significant lateral strength, stiffness, and deformation capacity. The work further investigates the seismic performance of different kinds of shear walls. Classified and brief comments about the seismic performance and the exist drawback of different kinds of shear walls and its application are conducted. Lastly, some useful suggestions and a new structure are proposed for the further research.

2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


2011 ◽  
Vol 255-260 ◽  
pp. 2439-2443 ◽  
Author(s):  
Xing Wen Liang ◽  
Jia Liang Kou ◽  
Ming Ke Deng

The paper explores the failure mode, failure mechanism and deformation capacity of medium-high and low-rise shear walls. The experimental results from load-tests of 5 high-performance concrete shear walls with 1.5 and 1.0 shear span ratio indicate that the shear walls deformation capacity benefits from several bar rings like a chain along boundary element in plastic hinge zone, showing that shear wall deformation capacity design is reliable to a certain extent, in that the plastic hinge zone often influences the damage level of shear walls. With the damage at different stages, the paper divides the performance of shear wall structure into three kinds: serviceability, life-safety and collapse-prevention. Accordingly, it is proposed that the performance controlling indicators for shear wall structures is composed of storey drift ratio and the rotation of plastic hinge zone, and also provides consult values for each performance level.


2014 ◽  
Vol 507 ◽  
pp. 322-327
Author(s):  
Yong Le Qi ◽  
Xin Xian Zhou ◽  
Can Dong Xie

This paper divides the seismic performance of shear wall into five levels: integrity, slight damage, slight ~ moderate damage and serious damage which are defined based on material damage. And physical and mechanical description of shear walls in each performance level is given. The displacement angle is selected as the seismic performance index limit. The numerical analysis of 524 pieces of shear walls has been made to discuss the influence on seismic deformation index limits of component according to axial compression ratio, flexure shear ratio, the nominal shear stress level, the hoop characteristic value and the reinforcement ratio of longitudinal bars. With mathematical statistic method, the calculation formula for deformation index limits of components is obtained, which can be used as the basis in the performance-based seismic evaluation of shear wall structures.


1978 ◽  
Vol 5 (3) ◽  
pp. 367-373
Author(s):  
O. A. Pekau ◽  
Vladimir Gocevski

This paper describes an investigation of coupled non-linear shear walls subjected to lateral load increasing monotonically up to overall collapse. Overall collapse includes base hinges in walls as well as yielding of connecting elements over either all or some portion of the total height. Curves useful for preliminary assessment of potential seismic performance of a structural system are generated following a parametric scheme. Particular attention is focused on connecting beam as well as system ductility capacities required to achieve overall collapse.


2011 ◽  
Vol 147 ◽  
pp. 80-85 ◽  
Author(s):  
M. Gholizadeh ◽  
Y. Yadollahi

Experimental and numerical studies conducted in the past three decades have demonstrated that a steel plate shear wall is an effective and economical lateral load resisting system against both wind and earthquake forces. The system consists of infill steel plates connected to boundary beams and columns over the full height of the framed bay. The infill plates can be stiffened or unstiffened and the beam-to-column connections can be rigid or shear connections. A properly designed steel plate shear wall has superior ductility, high initial stiffness, stable hysteresis loops, and good energy absorption capacity. These characteristics make the system outstanding in high-risk seismic regions. Use of steel plate shear wall systems has been shown to be more cost effective than the other lateral load resisting systems. Steel plate shear walls are much lighter than the commonly used reinforced concrete shear walls, which reduce both the gravity loads and seismic forces. This aspect significantly reduces the foundation costs and makes the system outstanding for application in rehabilitation projects. Whereas construction cost of stiffened steel plate shear wall is more than unstiffened steel plate shear wall therefore in this investigation the unstiffened steel plate shear wall has been studied as two types of simple and corrugated plate and the behavior has been compared in one story frame. This study was conducted with finite element approach theoretically. The results of this study demonstrated that behavior of corrugated plate is superior to simple plate because it has high loading capacity, ductility and energy absorption.


2018 ◽  
Vol 15 (2) ◽  
pp. 108
Author(s):  
Mochammad Surya Budi Utomo

The shear wall is a vertical structural element of a structural system that serves to withstand lateral loads, whether caused by wind or earthquake. In Indonesia is still often found structural system in old buildings that still use a minimal reinforcement ratio or in this case the lightly shear wall. The lightly sliding wall is believed to have a low lateral load capacity, but in some cases in many countries, the lightweight sliding wall is sufficiently resistant to earthquakes. The height-width ratio is an important aspect in the shear wall structure. Therefore, further research is needed on the effect of high-width ratios. This study discusses the effect of high-width ratios on shear lightly shear walls due to cyclic loads. In this study, the shear wall used as a test specimen with many test specimens was 9 shear wall walls with variations of height-width ratios (2.0, 1.3, and 1.0) or with sizes: (800x400mm), (800x600mm), and (800x800mm) . The test is carried out by providing cyclic load and axial load constant of 3% of axial capacity (Pn) of each specimen until the specimen is collapsed by the drift control method. Data in the form of loads and deviations per cycle are recorded for the analysis of collapse mechanisms. While the picture taken as a reference pattern of cracks. The results of the test show that with increasing height-width ratios can produce the smallest lateral load capacity, or vice versa. The lateral load capacity generated by each test object is SW 2.0 (1), SW 2.0 (2), SW 2.0 (3), SW 1.3 (1), SW 1.3 (2), SW 1.3 (3), SW 1.0 1), SW 1.0 (2), and SW 1.0 (3) are 1593kg, 1503 kg, 1592 kg, 3296 kg, 3388 kg, 3286 kg, 4772 kg, 4771 kg, and 4778 kg. Crack patterns that occur on each specimen have the same result that is the same occurrence of opening (gap opening) at the bottom of the wall.


2010 ◽  
Vol 163-167 ◽  
pp. 2274-2284
Author(s):  
Jian Wei Zhang ◽  
Wan Lin Cao ◽  
Hong Ying Dong ◽  
Gang Li

The shear wall with concrete filled steel tube (CFT) columns and steel plate is a new kind of composite shear wall. In order to know its seismic performance and failure mechanism, six 1/5 scale specimens with the same shear span ratio 1.5, including 3 steel plate shear walls (SPSWs) with CFT columns and 3 reinforced concrete shear walls (RCSWs) with CFT columns and embedded steel plate, were tested under cyclic loading. The thickness of the steel plates in the shear walls changed from 2mm, 4mm to 6mm. Based on the experiment, the load-carrying capacity, hysteresis characteristics, ductility, stiffness degradation, energy dissipation and damage characteristics of the specimens were analyzed. Especially, the ratio of height to sectional thickness of the steel plates in the shear wall was considered. The result shows that both the SPSW with CFT columns and the RCSW with CFT columns and embedded steel plate have good seismic performance and are with important practical engineering value.


Author(s):  
Ahmad Sheikh Abdallah ◽  
Safwan Chahal

The rapid growth of urban population and limited land space have greatly influenced the development of high-rise structures. Lateral loads have an important effect on the design as the building height increases. In order to resist lateral loads, safety and minimum damage should be the prime concern when designing tall buildings. To meet these requirements, the structure should have adequate lateral strength and lateral stiffness and sufficient ductility. Among the various structural systems, shear wall systems or moment resisting frame systems could be a point of choice for designers. Thus, it is important to review and observe the behavior of these systems under seismic effect. This study compared the seismic response of the above structural systems using a case study application at variable seismic zones (Zone 2B, Lebanon Zone, Zone 3, and Zone 4) and at different building stories (Eight and 12-story building). The seismic response is measured in term of time-period, maximum story displacement, maximum story drift, amount of steel and concrete needed. The outcome of this study portrayed that a shear wall system is more efficient in terms of cost and lateral load resistivity regardless of the building height and in the four seismic zones mentioned before.


2011 ◽  
Vol 368-373 ◽  
pp. 1396-1401
Author(s):  
Ming Jin Chu ◽  
Peng Feng ◽  
Lie Ping Ye

Shear walls are commonly used as structural elements to resist earthquake. The seismic performance of shear wall can be guaranteed under small earthquakes, but problems exist when it is subjected to large earthquakes. To improve the ductility and energy dissipation capacity of shear walls in large earthquakes, shear failure must be avoided and the performance of plastic hinge region must be improved. The adaptive-slit shear walls (ASSW) is proposed in this paper The mechanical characteristics of ASSW satisfy the requirements of structures under different seismic level. Therefore the damage process of ASSW can be controlled and the ductile shear failure can be realized, which obviously improve the seismic performance of shear wall structures.


Sign in / Sign up

Export Citation Format

Share Document