Using Context to Discern User Tasks on Desktop

2014 ◽  
Vol 519-520 ◽  
pp. 318-321
Author(s):  
Ning Lv ◽  
Jing Li Zhou ◽  
Lei Hua Qin

The precise context of user tasks helps to ameliorate personal information management on desktop. This paper introduces a novel approach to discern user tasks using contextual information which is divided into two categories, user behavior based context and text based context. With the contextual information, user tasks are discerned by support vector machine (SVM) method. Experimental results showed the impact of distinct attributes of files on the performance of user task identification.

Author(s):  
Jia-Bin Zhou ◽  
Yan-Qin Bai ◽  
Yan-Ru Guo ◽  
Hai-Xiang Lin

AbstractIn general, data contain noises which come from faulty instruments, flawed measurements or faulty communication. Learning with data in the context of classification or regression is inevitably affected by noises in the data. In order to remove or greatly reduce the impact of noises, we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine (Lap-TSVM). A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine (IFLap-TSVM) is presented. Moreover, we extend the linear IFLap-TSVM to the nonlinear case by kernel function. The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classifier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization. Experiments with constructed artificial datasets, several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine (TSVM), intuitionistic fuzzy twin support vector machine (IFTSVM) and Lap-TSVM.


2013 ◽  
Vol 475-476 ◽  
pp. 312-317
Author(s):  
Ping Zhou ◽  
Jin Lei Wang ◽  
Xian Kai Chen ◽  
Guan Jun Zhang

Since dataset usually contain noises, it is very helpful to find out and remove the noise in a preprocessing step. Fuzzy membership can measure a samples weight. The weight should be smaller for noise sample but bigger for important sample. Therefore, appropriate sample memberships are vital. The article proposed a novel approach, Membership Calculate based on Hierarchical Division (MCHD), to calculate the membership of training samples. MCHD uses the conception of dimension similarity, which develop a bottom-up clustering technique to calculate the sample membership iteratively. The experiment indicates that MCHD can effectively detect noise and removes them from the dataset. Fuzzy support vector machine based on MCHD outperforms most of approaches published recently and hold the better generalization ability to handle the noise.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Kun Zhang ◽  
Minrui Fei ◽  
Xin Li ◽  
Huiyu Zhou

Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 381 ◽  
Author(s):  
Yaping Liao ◽  
Junyou Zhang ◽  
Shufeng Wang ◽  
Sixian Li ◽  
Jian Han

Motor vehicle crashes remain a leading cause of life and property loss to society. Autonomous vehicles can mitigate the losses by making appropriate emergency decision, and the crash injury severity prediction model is the basis for autonomous vehicles to make decisions in emergency situations. In this paper, based on the support vector machine (SVM) model and NASS/GES crash data, three SVM crash injury severity prediction models (B-SVM, T-SVM, and BT-SVM) corresponding to braking, turning, and braking + turning respectively are established. The vehicle relative speed (REL_SPEED) and the gross vehicle weight rating (GVWR) are introduced into the impact indicators of the prediction models. Secondly, the ordered logit (OL) and back propagation neural network (BPNN) models are established to validate the accuracy of the SVM models. The results show that the SVM models have the best performance than the other two. Next, the impact of REL_SPEED and GVWR on injury severity is analyzed quantitatively by the sensitivity analysis, the results demonstrate that the increase of REL_SPEED and GVWR will make vehicle crash more serious. Finally, the same crash samples under normal road and environmental conditions are input into B-SVM, T-SVM, and BT-SVM respectively, the output results are compared and analyzed. The results show that with other conditions being the same, as the REL_SPEED increased from the low (0–20 mph) to middle (20–45 mph) and then to the high range (45–75 mph), the best emergency decision with the minimum crash injury severity will gradually transition from braking to turning and then to braking + turning.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 209-209
Author(s):  
Bo Han ◽  
Hongpeng Ding ◽  
Yanxia Zhang ◽  
Yongheng Zhao

AbstractCatastrophic failure is an unsolved problem existing in the most photometric redshift estimation approaches for a long history. In this study, we propose a novel approach by integration of k-nearest-neighbor (KNN) and support vector machine (SVM) methods together. Experiments based on the quasar sample from SDSS show that the fusion approach can significantly mitigate catastrophic failure and improve the accuracy of photometric redshift estimation.


2020 ◽  
Vol 19 (6) ◽  
pp. 2075-2090 ◽  
Author(s):  
Hao Cheng ◽  
Furui Wang ◽  
Linsheng Huo ◽  
Gangbing Song

Deposits prevention and removal in pipeline has great importance to ensure pipeline operation. Selecting a suitable removal time based on the composition and mass of the deposits not only reduces cost but also improves efficiency. In this article, we develop a new non-destructive approach using the percussion method and voice recognition with support vector machine to detect the sandy deposits in the steel pipeline. Particularly, as the mass of sandy deposits in the pipeline changes, the impact-induced sound signals will be different. A commonly used voice recognition feature, Mel-Frequency Cepstrum Coefficients, which represent the result of a cosine transform of the real logarithm of the short-term energy spectrum on a Mel-frequency scale, is adopted in this research and Mel-Frequency Cepstrum Coefficients are extracted from the obtained sound signals. A support vector machine model was employed to identify the sandy deposits with different mass values by classifying energy summation and Mel-Frequency Cepstrum Coefficients. In addition, the classification accuracies of energy summation and Mel-Frequency Cepstrum Coefficients are compared. The experimental results demonstrated that Mel-Frequency Cepstrum Coefficients perform better in pipeline deposits detection and have great potential in acoustic recognition for structural health monitoring. In addition, the proposed Mel-Frequency Cepstrum Coefficients–based pipeline deposits monitoring model can estimate the deposits in the pipeline with high accuracy. Moreover, compared with current non-destructive deposits detection approaches, the percussion method is easy to implement. With the rapid development of artificial intelligence and acoustic recognition, the proposed method can realize higher accuracy and higher speed in the detection of pipeline deposits, and has great application potential in the future. In addition, the proposed percussion method can enable robotic-based inspection for large-scale implementation.


Sign in / Sign up

Export Citation Format

Share Document