Optimization and Simulation of OFDM System Based on Orthogonal Wavelet

2014 ◽  
Vol 548-549 ◽  
pp. 1221-1226
Author(s):  
Zeng You Sun ◽  
Fan Ming Zeng

In order to reduce the Orthogonal Frequency division Multiplexing (OFDM) Inter-Carrier Interference (ICI), Put forward a kind of modulation method that based on the orthogonal frequency division multiplexing of orthogonal wavelet, Using orthogonal wavelet instead of discrete Fourier transform, optimize the design for OFDM systems, on the premise of without protection interval to reduce the system interference, using MATLAB to simulate the OFDM system, results show that the optimization of the OFDM can reduce the power of the ICI and Inter-symbol Interference (ISI) and improve the comprehensive anti-jamming of the OFDM system.

Author(s):  
Mayada Faris Ghanim

Wavelet transform has many advantages that make it suitable and efficient approach to replace Fast Fourier Transform (FFT) in conventional Orthogonal Frequency Division Multiplexing (OFDM) systems. Wavelet transform is employed in modern cellular networks to remove the use of cyclic prefix, which leads to decreasing the bandwidth losses and the power of transmission. Wavelet based OFDM system is designed in order to overcome the drawbacks of OFDM system so that the proposed system is good candidate for next generation wireless communications.


Author(s):  
Iram Maisarah Mokhtar ◽  
Norulhusna Ahmad ◽  
Hazilah Mad Kaidi ◽  
Mohd Azri Mohd Izhar ◽  
Norliza Mohamed

<span>A promising system of Generalized Inverse Discrete Fourier Transform Non-Orthogonal Frequency Division Multiplexing (GIDFT n-OFDM) system can fulfil the requirement of supporting higher data rate in Fifth Generation (5G) technology. However, this system experience High Peak to Average Power Ratio (PAPR) due to massive number of subcarriers signal is transmitted. In this paper, three types of usual PAPR reduction techniques were applied in GIDFT n-OFDM system which are Clipping, Partial transmit Transform (PTS) and Selective Mapping (SLM). The system performance is compared and evaluated using Complementary Cumulative Distribution Function (CCDF) plot. Simulation results show that SLM technique give significant reduction of PAPR 9 dB of the original performance.</span>


Author(s):  
Heba Abdul-Jaleel Al-Asady ◽  
Hassan Falah Fakhruldeen ◽  
Mustafa Qahtan Alsudani

<p>Orthogonal frequency division multiplexing (OFDM) is a transmission system that uses multiple orthogonal carriers that are sent out at the same time. OFDM is a technique for mobile and wireless communication that has high-efficient frequency utilization, high data-rate transmission, simple and efficient implementation using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT), and reduces inter symbol interference (ISI) by inserting cyclic prefix (CP). One of the most important approaches in an OFDM system is channel estimation. In this paper, the orthogonal frequency division multiplexing system with the Rayleigh channel module is analyzed for different areas. The proposed approach used large numbers of subcarriers to transmit the signals over 64-QAM modulation with pilot add channel estimation. The accuracy of the OFDM system is shown in the measuring of the relationships of peak power to the noise ratio and bit error rate.</p>


2013 ◽  
Vol 774-776 ◽  
pp. 1671-1676
Author(s):  
Chen Wu Li ◽  
Jian Zhang ◽  
Qin Xie ◽  
Xiao Hong Zhang

This paper first analyzes the transmission characteristics of low-voltage power line channels with the focus on the study of carrier modulation technology regarding the power line communication part, then proposes the orthogonal frequency division multiplexing technology that serves for the digital communication of family network power line communication gateways, analyzes the OFDM system principle, actulizes OFDM modulation and demodulation through discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT), and build the OFDM simulation model. Finally, a specific plan of using power lines as the family network transmission media is proposed.


2020 ◽  
Vol 3 (2) ◽  
pp. 45
Author(s):  
N. M. A. E. Dewi Wirastuti ◽  
I.G.A.K. Diafari Djuni Hartawan ◽  
I Made Arsa Suyadnya ◽  
Duman Care Khrisne

Orthogonal Frequency Division Multiplexing (OFDM) system showed the use of Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) to perform the baseband modulation and demodulation. So that, it can increase and improve the efficiency of the modulation and demodulation. Currently, the OFDM is being utilized in the field of broadband wireless communication, which transmit signals orthogonally, that increases speed of information transmission. It also has high proficiency with high bandwidth and provide large data rates and robust against the multipath delay spread. On the other hand, there are some issues faced OFDM system which are high Peak Average Power Ratio (PAPR), and sensitive to Phase Noise (PN) and Carrier Frequency Offset (CFO). This paper presents Orthogonal Frequency Division Multiplexing (OFDM) performance evaluation in the presence of CFO with two different environment scenarios were used: an AWGN channel and a Rayleigh fading channel. The simulation was performed to evaluate the effects of CFO based on Bit Error Rate (BER) vs. Energy Bit per Noise Ratio (Eb/No). The results showed that for BER degradation caused by CFO effects have presented in our simulation for both AWGN and Rayleigh fading channel.


2019 ◽  
Vol 8 (3) ◽  
pp. 2003-2008

Orthogonal Frequency Division Multiplexing (OFDM) is one of the multicarrier transmission techniques used in wireless communication system. It has many benefits such as robust in channel fading and has high spectral density. The main objective of OFDM implementation in wireless communication system is to achieve less or zero Bit Error Rate (BER). However, OFDM design complexity, requirement and selection of the suitable modulation method are among the current issues. Thus, this paper aims to investigate the performance of OFDM in wireless communication by developing two OFDM based system designs. The transmitter, channel and receiver are designed based on OFDM system principles. Forward Error Correction (FEC) method is applied to reduce the BER. Both OFDM designs produce less BER with zero BER for the second OFDM design. The investigation study shows that the performance of OFDM can be enhanced by applying Fast Fourier Transform (FFT) technique. Zero BER can be achieved if the suitable modulation scheme is applied in the system. The developed designs are not complex, suitable to be applied for IEEE 802.11 standard. The BER performance can be influenced by the types of channels, signal to noise ratio (SNR) and various modulation schemes. Thus, this study can be used as a guidance to implement the OFDM in the current or future wireless communication system.


2013 ◽  
Vol 321-324 ◽  
pp. 2837-2840
Author(s):  
Xi Jun Zhang ◽  
Jian Bin Xue ◽  
Ying Lin ◽  
Ji Ai He

Orthogonal frequency division multiplexing (OFDM) is a kind of highly transmission technology. It has been taken more and more attention in many ways. In this paper it mainly discussed the simulation process and several interpolation algorithms in OFDM system. Using computer we simulate the interpolation algorithms in OFDM channel estimation. Through the simulation results we compare the advantage and disadvantage of the interpolation algorithms. At last we can use the conclusion to choose the correct interpolation algorithms in OFDM channel estimation.


Sign in / Sign up

Export Citation Format

Share Document