Evaluation of True Position Using Coordinate Measuring Machine

2014 ◽  
Vol 555 ◽  
pp. 511-517
Author(s):  
Roman Budiský ◽  
Marian Králik ◽  
Ján Kost

The article makes a contribution to the ever-important topic of evaluating geometric deviations of tolerated forms related to the datum system using coordinate measuring machines with a touch probe system. The datum system consists of the coordinate system and the coordinates planes. An integral part of the article is the quantification of the true position tolerated form related to the datum system and experimental evaluation of the deviation with calculation of measurement uncertainty, according to STN EN ISO 15530-3.

2005 ◽  
Vol 295-296 ◽  
pp. 325-330 ◽  
Author(s):  
M. Watanabe ◽  
Ryoshu Furutani

Requirement for precision measurement becomes extremely advanced as industrial needs advances. CMM (Coordinate Measuring Machine) is one of the most adequate measuring machines to meet the requirement. As the precision of CMM becomes higher, it is important to improve the sensitivity of probe. We developed a contact type probe which consisted of a QPD (quadratic photo diode), a ball lens, and a laser diode to detect the displacement of stylus. The probe system has a resolution of 31nm.


2021 ◽  
Vol 11 (14) ◽  
pp. 6556
Author(s):  
Vladimír Rudy ◽  
Marián Králik ◽  
Peter Malega ◽  
Naqib Daneshjo

The article analyses and evaluates the ever-important topic of assessing geometric deviation of tolerated formations related to bases with the usage of coordinate measuring machines. The basic system for off-line simulation consists of the coordinate planes of a component’s coordinate system. At the beginning of the measurement, the coordinate system is created by the “3–2–1“alignment. Due to production deviations in real surfaces of the component, each measurement generates mutually different coordinate systems, which is well proven by the experiment on measuring with a coordinate measuring machine DEA Global Performance 12.22.10. An integral part of the article is also the quantification of geometric deviations of ideal tolerated formations related to bases, the estimate of the uncertainty of measurement arising from the placement of points in defining the base system, and the effect of such uncertainty upon the interval of satisfactory values in conformity with the STN EN ISO 14253-1 technical standard. The article also includes a proposal measure in order to ensure the reproducibility of defining the mutual position of coordinate systems.


2001 ◽  
Vol 123 (08) ◽  
pp. 60-62

OMC Precision Products, a maker of spinal implant, first line of attack for smoothness is machining to minimize cusps or scallops left behind by machine tool cutters. In finishing passes, the cusps are diminished by minimizing stepovers, the distance the tool moves into the new path. OMC focuses on making implants for correcting spinal deformities. OMC has three lines of implants, all machined from stainless steel or titanium. It makes plates and screws for spines that are degenerating or have undergone trauma; hooks and rods for deformities such as scoliosis; and cages to replace damaged vertebrae. First-article inspections are done on a Primus coordinate measuring machine from Mycrona Inc. of Plymouth, Michigan. The unit is equipped with a touch probe system from Renishaw Inc. of Schaumburg, Illinois. OMC also produces 2 alternatives to plates, a spine straightening system based on titanium or stainless-steel rods several inches long. The rods are locked in place with diverse types of bone screws or spinal hooks.


2021 ◽  
Vol 11 (5) ◽  
pp. 2353
Author(s):  
Ján Varga ◽  
Teodor Tóth ◽  
Peter Frankovský ◽  
Ľudmila Dulebová ◽  
Emil Spišák ◽  
...  

This paper deals with various automated milling strategies and their influence on the accuracy of produced parts. Among the most important factors for surface quality is the automated milling strategy. Milling strategies were generated from two different programs, CAM system SolidCAM, with the help of workshop programming in the control system Heidenhain TNC 426. In the first step, simulations of different toolpaths were conducted. Using geometric tolerance is becoming increasingly important in robotized production, but its proper application requires a deeper understanding. This article presents the measurement of selected planes of robotized production to evaluate their flatness, parallelism and perpendicularity deviations after milling on the coordinate measuring machine Carl Zeiss Contura G2. Total average deviations, including all geometric tolerances, were 0.020 mm for SolidCAM and 0.016 mm for Heidenhain TNC 426. The result is significantly affected by the flatness of measured planes, where the overlap parameter of the tools has a significant impact on the flatness of the surface. With interchangeable cutter plate tools, it is better to use higher overlap to achieve better flatness. There is a significant difference in production time, with SolidCAM 25 min and 30 s, and Heidenhain 48 min and 19 s. In accordance with these findings, the SolidCAM system is more suitable for production.


2014 ◽  
Vol 568-570 ◽  
pp. 320-325 ◽  
Author(s):  
Feng Shan Huang ◽  
Li Chen

A new CCD camera calibration method based on the translation of Coordinate Measuring Machine (CMM) is proposed. The CMM brings the CCD camera to produce the relative translation with respect to the center of the white ceramic standard sphere along the X, Y, Z axis, and the coordinates of the different positions of the calibration characteristic point in the probe coordinate system can be generated. Meanwhile, the camera captures the image of the white ceramic standard sphere at every position, and the coordinates of the calibration characteristic point in the computer frame coordinate system can be registered. The calibration mathematic model was established, and the calibration steps were given and the calibration system was set up. The comparing calibration result shows that precision of this method is equivalent to that of the special calibration method, and the difference between the calibrating data of these two methods is within ±1μm.


2011 ◽  
Vol 18 (2) ◽  
pp. 209-222 ◽  
Author(s):  
G. Rajamohan ◽  
M. Shunmugam ◽  
G. Samuel

Practical Measurement Strategies for Verification of Freeform Surfaces Using Coordinate Measuring MachinesFreeform surfaces have wider engineering applications. Designers use B-splines, Non-Uniform Rational B-splines, etc. to represent the freeform surfaces in CAD, while the manufacturers employ machines with controllers based on approximating functions or splines. Different errors also creep in during machining operations. Therefore the manufactured freeform surfaces have to be verified for conformance to design specification. Different points on the surface are probed using a coordinate measuring machine and substitute geometry of surface established from the measured points is compared with the design surface. The sampling points are distributed according to different strategies. In the present work, two new strategies of distributing the points on the basis of uniform surface area and dominant points are proposed, considering the geometrical nature of the surfaces. Metrological aspects such as probe contact and margins to be provided along the sides have also been included. The results are discussed in terms of deviation between measured points and substitute surface as well as between design and substitute surfaces, and compared with those obtained with the methods reported in the literature.


2014 ◽  
Vol 1 (2) ◽  
pp. 128-139 ◽  
Author(s):  
Tzu-Liang Bill Tseng ◽  
Yongjin James Kwon

Abstract This study investigates the effects of machining parameters as they relate to the quality characteristics of machined features. Two most important quality characteristics are set as the dimensional accuracy and the surface roughness. Before any newly acquired machine tool is put to use for production, it is important to test the machine in a systematic way to find out how different parameter settings affect machining quality. The empirical verification was made by conducting a Design of Experiment (DOE) with 3 levels and 3 factors on a state-of-the-art Cincinnati Hawk Arrow 750 Vertical Machining Center (VMC). Data analysis revealed that the significant factor was the Hardness of the material and the significant interaction effect was the Hardness + Feed for dimensional accuracy, while the significant factor was Speed for surface roughness. Since the equally important thing is the capability of the instruments from which the quality characteristics are being measured, a comparison was made between the VMC touch probe readings and the measurements from a Mitutoyo coordinate measuring machine (CMM) on bore diameters. A machine mounted touch probe has gained a wide acceptance in recent years, as it is more suitable for the modern manufacturing environment. The data vindicated that the VMC touch probe has the capability that is suitable for the production environment. The test results can be incorporated in the process plan to help maintain the machining quality in the subsequent runs.


2018 ◽  
Vol 232 ◽  
pp. 02015
Author(s):  
Zhihua Jiang ◽  
Wenjian Zhang ◽  
Lizhen Cui

Three dimensional laser scanning coordinate measuring machine is suitable for the measurement of 3D printing products, and its measuring range depends on the three coordinate measuring machine. It is the main 3D printing product measuring instrument [1]. In this paper, the principle of laser scanning three coordinate measuring machine is analyzed. The accuracy and reliability of the calibration system for 3D printing products are verified. According to the newly revised JJF 1064 Calibration specification for coordinate measuring machines [3], it is calibrated.


Sign in / Sign up

Export Citation Format

Share Document