Experiment Study of Demulsifier on the Oily Wastewater Treatment

2014 ◽  
Vol 945-949 ◽  
pp. 3475-3478
Author(s):  
Bao Jun Liu ◽  
Jing Cheng Shi ◽  
Li Ping Guo ◽  
Yin Peng Li

Adopts the method of adding demulsifiers into the oily wastewater to increase the droplets size to further improve the efficiency of oil-water separation, and puts forward the corresponding optimized indicators and methods of demulsifiers. The optimized selection of the demulsifiers and its additive dosage was carried out by indoor experiments based on the optimized indicators. Using artificial produced water to test the treatment effect of the optimized demulsifier at different action time. The experiments show that demulsifier S1 with additive dosage of 20mg/l can accordance with the requirements of the processing very well, and as the increase of action time, the average size of droplets increase and the amount of the droplets which under 1μm decrease.

RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68293-68298 ◽  
Author(s):  
Shanhu Liu ◽  
Qingfeng Xu ◽  
Sanjay S. Latthe ◽  
Annaso B. Gurav ◽  
Ruimin Xing

A magnetic PU sponge displays superhydrophobicity/superoleophilicity, and more favorably possesses magnetic responsiveness and superior stability against corrosive solutions, showing great potential in practical oily wastewater treatment.


2019 ◽  
Vol 7 (27) ◽  
pp. 16447-16457 ◽  
Author(s):  
Lei Kang ◽  
Jinpeng Li ◽  
Jinsong Zeng ◽  
Wenhua Gao ◽  
Jun Xu ◽  
...  

Superhydrophobic surfaces have received increasing attention in a broad range of important fields including oily wastewater treatment and oil collection in spills accidents.


RSC Advances ◽  
2019 ◽  
Vol 9 (23) ◽  
pp. 12854-12863 ◽  
Author(s):  
Wanting Rong ◽  
Haifeng Zhang ◽  
Yanjing Tuo ◽  
Weiping Chen ◽  
Xiaowei Liu

Superwetting porous FZCF as immiscible oil/organic solvents separation material that possesses excellent corrosion resistance can be widely applied in many industrial fields such as oily wastewater treatment and marine oil spill accidents.


2021 ◽  
Author(s):  
Abdelhak Ladmia ◽  
Dr. Younes bin Darak Al Blooshi ◽  
Abdullah Alobedli ◽  
Dragoljub Zivanov ◽  
Myrat Kuliyev ◽  
...  

Abstract The expected profiles of the water produced from the mature ADNOC fields in the coming years imply an important increase and the OPEX of the produced and injected water will increase considerably. This requires in-situ water separation and reinjection. The objective of in-situ fluid separation is to reduce the cost of handling produced water and to extend the well natural flow performance resulting in increased and accelerated production. The current practice of handling produced water is inexpensive in the short term, but it can affect the operating cost and the recovery in the long term as the expected water cut for the next 10-15 years is forecasted to incease significantly. A new water management tool called downhole separation technology was developed. It separates oil and & gas from associated water inside the wellbore to be reinjected back into the disposal wells. The Downhole Oil Water Separation (DHOWS) Technology is one of the key development strategies that can reduce considerable amounts of produced water, improve hydrocarbon recovery, and minimize field development cost by eliminating surface water treatment and handling costs. The main benefits of DHOWS include acceleration of oil offtake, reduction of production cost, lessening produced water volumes, and improved utilization of surface facilities. In effect, DHOWS technologies require specific design criteria to meet the objectives of the well. Therefore, multi--discipline input data are needed to install an effective DHOWS with a robust design that economically outperforms and boosts oil and/or gas productions. This paper describes the fundamental criteria and workflow for selecting the most suitable DHOWS design for new and sidetracked wells to deliver ADNOC production mandates in a cost-effective manner while meeting completion requirements and adhering to reservoir management guidelines.


NANO ◽  
2021 ◽  
pp. 2150061
Author(s):  
Yuntian Wan ◽  
Xue Lin ◽  
Zhongshuai Chang ◽  
Xiaohui Dai ◽  
Jiangdong Dai

Currently, with the increasingly serious pollution problem of oily wastewater, it is urgent to develop advanced materials and methods. In this work, a Fe(III)-CMC@Ni(OH)2@Ni composite foam with superhydrophilic and underwater superoleophobicity was fabricated by an in situ growth of flower-like Ni(OH)2 nanoparticles and chelated assembly of Fe(III)-CMC nanohydrogel via a layer-by-layer self assembly using Fe[Formula: see text] ion and carboxymethyl cellulose (CMC). The composite foam could separate various oil/water mixtures and exhibited excellent efficiency over 99%. This foam possessed ultrahigh water flux (220000[Formula: see text]L m[Formula: see text] h[Formula: see text] and better resistant to penetration pressure (1.3[Formula: see text]kPa). After 30 cycles, the oil–water separation performance reduced only 0.5%, but the foam structure was still stable that guarantees a better lifetime. Besides, this composite foam showed anti-fouling, unique durability and excellent corrosion resistance performance. Taking into account all good properties, Fe(III)-CMC@Ni(OH)2@Ni composite foam was expected to be a potential candidate for responding to all kinds of complex oily wastewater conditions.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5714
Author(s):  
Ha-Jin Lee ◽  
Won San Choi

Air and water pollution pose an enormous threat to human health and ecosystems. In particular, particulate matter (PM) and oily wastewater can cause serious environmental and health concerns. Thus, controlling PM and oily wastewater has been a great challenge. Various techniques have been reported to effectively remove PM particles and purify oily wastewater. In this article, we provide a review of the recent advancements in air filtration and oil/water separation using two- and three-dimensional (2D and 3D) bulk materials. Our review covers the advantages, characteristics, limitations, and challenges of air filters and oil/water separators using 2D and 3D bulk materials. In each section, we present representative works in detail and describe the concepts, backgrounds, employed materials, fabrication methods, and characteristics of 2D and 3D bulk material-based air filters and oil/water separators. Finally, the challenges, technical problems, and future research directions are briefly discussed for each section.


2015 ◽  
Vol 73 (5) ◽  
pp. 1098-1103 ◽  
Author(s):  
Jun Liu ◽  
Wanxia He ◽  
Peng Li ◽  
Siying Xia ◽  
Xiaomeng Lü ◽  
...  

Oil–water separation has recently become a worldwide challenge due to the frequent occurrence of oil spill accidents and increasing industrial oily wastewater. In this work, the multifunctional mesh films with underwater oleophobicity and certain bacteriostatic effects are prepared by layer-by-layer assembly of graphene oxide-silica coatings on stainless steel mesh. The mesh film exhibits excellent environmental stability under a series of harsh conditions. The new, facile and reusable separation system is proposed to achieve deep treatment of oily wastewater, and the oil collection rate can reach over 99%.


2014 ◽  
Vol 556-562 ◽  
pp. 867-871
Author(s):  
Qiu Shi Zhao

It is significative to study sewage treatment process in low permeable oil fields. It could enhance the oil recovery. The water quality characteristics and oil/water separation characteristics were researched during different period process by GC-MS. It shows that there are about 108 kinds of organic matters, including 45 kinds of aliphatic hydrocarbon, 7 kinds of aine, 5 kinds of sulfocompound and 9 kinds of hexacyclic compounds, such as Benzene, phenol, naphthalene and anthracene. The percent of oil droplets which size was less than 10μm is 57.3%, compared to 91.6% which size was more than 50μm. It is difficult to separate the water and oil. The remaining oil was emulsified oil. The process was hard to decrease COD, and some pollutants were existed in water, such as Arsenic, Selenium, Mercury ,Cadmium and Cr6+. It is further proposed to optimize and develop this process to removal oil and suspended solids.


2018 ◽  
Vol 5 (5) ◽  
pp. 171979 ◽  
Author(s):  
S. S. Shen ◽  
K. P. Liu ◽  
J. J. Yang ◽  
Y. Li ◽  
R. B. Bai ◽  
...  

A hollow fibre membrane was fabricated by blending polyvinylidene fluoride (PVDF) with a triblock copolymer additive polymer that has both hydrophilic and oleophobic surface properties. The novel membrane was characterized and examined for oil/water separation under various system conditions, including different cross-flow rate, feed temperature, trans-membrane pressure, and its rejection and cleaning efficiency, etc. By applying the membrane into the filtration of synthesized oil/water emulsion, the membrane constantly achieved an oil rejection rate of above 99%, with a relatively constant permeate flux varied in the range of 68.9–59.0 l m −2  h −1 . More importantly, the fouling of the used membrane can be easily removed by simple water flushing. The membrane also demonstrated a wide adaptability for different types of real oily wastewater, even at very high feed oil concentration (approx. 115 000 mg l −1 in terms of chemical oxygen demand (COM)). Hence, the novel triblock copolymer additive-modified PVDF membrane can have a great prospect in the continuing effort to expand the engineering application of polymeric membranes for oily wastewater treatment.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 115
Author(s):  
Jiaqi Wang ◽  
Zhenzhong Fan ◽  
Qingwang Liu ◽  
Qilei Tong ◽  
Biao Wang

The discharge of oily wastewater and oil spills at sea are the current difficulties in water pollution control. This problem often leads to terrible disasters. Therefore, the effective realization of oil-water separation is a very challenging problem. Superhydrophobic sponge is a promising oil-absorbing material. In this article, we reported a superhydrophobic sponge with nano-Fe3O4 for oil-water separation. The addition of nano-Fe3O4 allows the sponge to be recycled under the action of magnetic force. The sponge has the advantages of low cost, simple preparation and efficient oil-water separation. This kind of sponge is very worthy of promotion for the treatment of oily wastewater and marine oil spill accidents.


Sign in / Sign up

Export Citation Format

Share Document