Study on Seismic Resistant Properties of the Integral Structure after Adding Steel Storey on Top of the Multistoried Brick-Concrete Architecture

2014 ◽  
Vol 576 ◽  
pp. 81-85
Author(s):  
Yan Hua Guo ◽  
Xi Cao ◽  
Liang Wang

The whole quality, stiffness and damping of the structure have changed a lot after retrofitting with steel adding layer. It should make seismic response analysis for the overall structure. Use finite element analysis software SATWE to set up finite element models for a three-layer masonry structure with steel top-adding layer. Bottom layer shear, bottom layer axial force and the horizontal displacement of Y direction are obtained by using response spectrum analysis method and time history analysis method. Analysis results indicate that the stories with sudden change in stiffness show less resistance against the earthquake and require special attention in design. Under earthquakes, the analysis to determine the integrated performance of the structure is necessary.

2014 ◽  
Vol 619 ◽  
pp. 81-90
Author(s):  
Xiu Yun Gao ◽  
Yi Tan Jiang

According to the Chaoyang town east bridge design data, build the model with finite element analysis method. Based on two levels fortification, two stage design ideas of seismic design, modal response spectrum and seismic response of the nonlinear time history analysis method are used respectively. The nonlinear effect of the boundary conditions are considered in the analysis process, and the seismic response of the cable-stayed bridge is obtained, providing bases and presenting methods for aseismic design of Chaoyang town east bridge.


2010 ◽  
Vol 29-32 ◽  
pp. 2443-2448
Author(s):  
Dong Fang Hu ◽  
Yan Li ◽  
Jian Dong Shang

Considering the nonlinear relationship of the joint surface between parts in machine tool assembly, a finite element analysis method based on assembly relationship is proposed. By this method, a finite element model is set up. Based on the analysis of experimental data, the result is close to the actual working conditions, which proves that this analysis method based on the machine tool assemble relationship is feasible and reliable


2012 ◽  
Vol 204-208 ◽  
pp. 1301-1306
Author(s):  
Guo Dong Zhang ◽  
Jian Long Zhang ◽  
Jian Long Cao ◽  
Wen Luo

Based on the theory of soil-structure interaction, the underground structure and surrounding soil as a system, and the finite element analysis model is established, and finite element dynamic analysis method is implemented, the three seismic acceleration time history of the different spectrum characteristics is inputted, the seismic effect on the surrounding ground of underground structure is analyzed. The results show that the effect on dynamic response is the limited range and not significant, when seismic design of structures on the surrounding sites is implemented, additional dynamic response on surrounding sites does not need to consider.


1986 ◽  
Vol 13 (4) ◽  
pp. 485-497
Author(s):  
R. Kar

This paper describes the structural design approach and the method of seismic qualification for an extra high voltage disconnect switch, a vital component in the substations of a power system network. Shaping and sizing of porcelain members of the frame received special attention to enhance their resistance to earthquake. A carefully developed finite element model, on analysis by response spectrum and time-history methods, showed acceptable seismic performance and an adequate margin of safety. Shake table tests for seismic qualification, called for by the specification, were not feasible owing to the large dimensions of the complete assembly. The alternative approach was to perform in situ modal tests. By exciting the structure with a random force through a portable hydraulic exciter and using accelerometers to record the structural response, the dynamic characteristics of the equipment — the frequencies, mode shapes, and damping — were determined. Correlation between the results of finite element analysis and experimental modal analysis confirmed the validity of the analytical model. Application of combined analysis and testing for seismic qualification is demonstrated by a case study on an 800 kV disconnect switch.


2016 ◽  
Vol 851 ◽  
pp. 733-738
Author(s):  
Zi Chun Zhou ◽  
Hong Gang Lei

In this paper, we analyze the dynamic and seismic performance of a high rise antique-style pagoda by using the response spectrum analysis and the time history analysis method, which are implemented in finite element software. The result of our system can provide a reference to the structural designer to ensure the structure of such architecture meets the seismic fortification requirements.


2011 ◽  
Vol 243-249 ◽  
pp. 1876-1880
Author(s):  
Ying Wang ◽  
Jian Xin Liu ◽  
Chong Wang

A structure model of three-span continuous rigid frame bridge was constructed based on the finite element method. At first, the modal analysis was performed to get the natural frequencies and periods. The dynamic characteristics of the bridge structure were summarized, and some improvement measures are suggested to overcome the shortcoming for the bridge structure. Then, seismic response analysis was carried out based on the EL-Centro wave. The input excitations adopted the combination of vertical wave plus longitudinal wave, or vertical wave plus lateral wave. Based on the two excitation cases, some useful results were obtained, which include internal forces, displacements, accelerations time-history curves of the critical sections for the bridge structure. And some commentates about the time-history curves are given. At last, some helpful conclusions are drawn based on the calculation and analysis above. The calculation methods and results in this paper can provide some referenced information for the engineering design.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.


Sign in / Sign up

Export Citation Format

Share Document