Numerical Simulation for the Seasonal Change of the Temperature and Humidity Field of Embankment in Moist Heat Areas

2014 ◽  
Vol 587-589 ◽  
pp. 1295-1300
Author(s):  
Yun Que ◽  
Jia Chen

Taking the meteorological data in Fuzhou area in 2011 as an example, this paper investigate the seasonal change of the temperature and humidity field of embankment in moist heat areas based on the finite difference technology programmed Moisture-heat coupled procedure. The results show that the highest temperature in the soil surface of embankment is near 40°C and the highest temperature gradient is up to 0.22°C/cm in summer. The lowest temperature is near 10°C and the highest temperature gradient is up to-0.21°C/cm in winter. Fluctuation range of the water content in the surface of the embankment (0cm~10cm) is between 3% and 20%, and fluctuation range of the water content of the shallow soil layer of embankment (10cm~50cm) is between 10% and 20%, and the water content in the deep layer of embankment (50cm~250cm) changes not apparently with season. If the temperature gradient of soil is 0°C/cm and the yearly fluctuation range of the water content of the embankment is 2%, the temperature and humidity of the embankment that can be affected by the climate of the Fuzhou area is in the depth of about 4.0m and 2.5m respectively.

2015 ◽  
Vol 50 (4) ◽  
pp. 336-348
Author(s):  
Mohamed H. Ahmed ◽  
Saud Gutub

Modern irrigation techniques use automated systems where irrigation schedules are controlled according to certain criteria. The objective of this study is to numerically estimate irrigation events, water content and temperature distributions, evaporation, drainage, and soil water under closed loop automated irrigation systems of a bare soil. The automated irrigation system is activated and deactivated according to the water content value. The governing equations for transient one-dimensional liquid water flow and heat transfer of unsaturated porous media are applied. The energy balance equation at the soil surface is used as an upper boundary condition based on measured meteorological data of Jeddah City. The results show that the current procedure can be applied to simulate different variables under automated irrigation systems. The water content shows periodic behavior, as well as time lags and decreases in amplitude with soil depth. The timing of applied irrigation has an important impact on evaporation and soil temperature. Applying irrigation water during the daytime leads to increased evaporation. The soil surface temperature decreases suddenly when water is supplied in the afternoon, while a slight increase is observed when irrigation is applied at midnight.


2004 ◽  
Vol 43 (12) ◽  
pp. 1917-1928 ◽  
Author(s):  
Qiang Zhang ◽  
Ronghui Huang

Abstract Using data observed at Dunhuang, in the Gansu, in the arid region of northwest China in the summer, the characteristics of the soil water content, temperature, and atmospheric humidity were analyzed. It was found that the depth of the active soil temperature layer is about 5 cm, which is much thinner than that of typical soils. In addition, not only is the atmospheric humidity gradient in the surface layer often inverted, but so too is the soil water content gradient in the shallow layer. The diurnal variation of soil water content can be divided into four stages, including wet, water loss, dry, and water gain. It is shown that in soil water content profiles the depth of the active soil layer is about 10 cm, and soil water content inversion is the primary feature in the shallow layer during the “wet” stage. The presence of soil water content inversion indicates that soil in the shallow layer can absorb water from the air through condensation in the nighttime and emit water vapor to the air through evaporation in the daytime. The formation of a soil water content inversion is mainly related to the state of the soil surface temperature.


Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kai Yang ◽  
Zejun Tang ◽  
Jianzhang Feng

Sandy soils are prone to nutrient losses, and consequently do not have as much as agricultural productivity as other soils. In this study, coal fly ash (CFA) and anionic polyacrylamide (PAM) granules were used as a sandy soil amendment. The two additives were incorporated to the sandy soil layer (depth of 0.2 m, slope gradient of 10°) at three CFA dosages and two PAM dosages. Urea was applied uniformly onto the low-nitrogen (N) soil surface prior to the simulated rainfall experiment (rainfall intensity of 1.5 mm/min). The results showed that compared with no addition of CFA and PAM, the addition of CFA and/or PAM caused some increases in the cumulative NO3−-N and NH4+-N losses with surface runoff; when the rainfall event ended, 15% CFA alone treatment and 0.01–0.02% PAM alone treatment resulted in small but significant increases in the cumulative runoff-associated NO3−-N concentration (p < 0.05), meanwhile 10% CFA + 0.01% PAM treatment and 15% CFA alone treatment resulted in nonsignificant small increases in the cumulative runoff-associated NH4+-N concentration (p > 0.05). After the rainfall event, both CFA and PAM alone treatments increased the concentrations of NO3−-N and NH4+-N retained in the sandy soil layer compared with the unamended soil. As the CFA and PAM co-application rates increased, the additive effect of CFA and PAM on improving the nutrient retention of sandy soil increased.


Author(s):  
Виктор Михайлович Белолипецкий ◽  
Светлана Николаевна Генова

Практический интерес в районах вечной мерзлоты представляет глубина сезонного оттаивания. Построена одномерная (в вертикальном направлении) упрощенная полуэмпирическая модель динамики вечной мерзлоты в “приближении медленных движений границ фазового перехода”, основанная на задаче Стефана и эмпирических соотношениях. Калибровочные параметры модели выбираются для исследуемого района с использованием натурных измерений глубины оттаивания и температуры воздуха. Проверка работоспособности численной модели проведена для района оз. Тулик (Аляска). Получено согласие рассчитанных значений глубины талого слоя и температуры поверхности почвы с результатами измерений Due to the change in global air temperature, the assessment of permafrost reactions to climate change is of interest. As the climate warms, both the thickness of the thawed soil layer and the period for existence of the talik are increased. The present paper proposes a small-size numerical model of vertical temperature distributions in the thawed and frozen layers when a frozen layer on the soil surface is absent. In the vertical direction, thawed and frozen soils are separated. The theoretical description of the temperature field in soils when they freeze or melt is carried out using the solution of the Stefan problem. The mathematical model is based on thermal conductivity equations for the frozen and melted zones. At the interfacial boundary, the Dirichlet condition for temperature and the Stefan condition are set. The numerical methods for solving of Stefan problems are divided into two classes, namely, methods with explicit division of fronts and methods of end-to-end counting. In the present work, the method with the selection of fronts is implemented. In the one-dimensional Stefan problem, when transformed to new variables, the computational domain in the spatial variable is mapped onto the interval [0 , 1]. In the presented equations, the convective terms characterize the rate of temperature transfer (model 1). A simplified version of the Stefan problem solution is considered without taking into account this rate (“approximation of slow movements of the boundaries of the phase transition”, model 2). The model is tuned to a specific object of research. Model parameter values can vary significantly in different geographic regions. This paper simulates the dynamics of permafrost in the area of Lake Tulik (Alaska) in summer. Test calculations based on the proposed simplified model show its adequacy and consistency with field measurements. The developed model can be used for qualitative studies of the long-term dynamics of permafrost using data of the air temperature, relative air humidity and precipitation


1986 ◽  
Vol 38 (4) ◽  
pp. 337-348 ◽  
Author(s):  
K.J. McInnes ◽  
E.T. Kanemasu ◽  
D.E. Kissel ◽  
J.B. Sisson

2010 ◽  
Vol 53 (10) ◽  
pp. 1527-1532 ◽  
Author(s):  
YuanJun Zhu ◽  
YunQiang Wang ◽  
MingAn Shao

2006 ◽  
Vol 12 (2) ◽  
pp. 126-132 ◽  
Author(s):  
Mariko Egawa ◽  
Yukihiro Ozaki ◽  
Motoji Takahashi

Sign in / Sign up

Export Citation Format

Share Document