Effects of Texture on the Fracture Mechanism of AZ31 Magnesium Alloy under Dynamic Impact

2014 ◽  
Vol 598 ◽  
pp. 98-101
Author(s):  
Gang Wan ◽  
Bao Lin Wu

the hot extruded AZ31 magnesium alloy which has basal texture was impacted along different direction and different fracture mode appeared. Under different impacted direction, the basal slip, prismatic slip, pyramidal slip, compression twin and tension twin have different critical resolved shearing stress (CRSS) and Schmid factor. Then different deformation modes were activated and resulted to different fracture modes.

2011 ◽  
Vol 399-401 ◽  
pp. 21-25
Author(s):  
De Liang Yin ◽  
Jin Qiang Liu ◽  
Xin Chen

A mesoscopic crystalline model was proposed to quantitatively analyze the relative activities of deformation modes involved in the plastic deformation of an AZ31 magnesium alloy at room temperature. The plastic response of a cast AZ31 magnesium alloy with random texture can be well predicted by this model. It is demonstrated that the remarkable difference of relative activities of <c+a> pyramidal slip should be attributed to the different strain hardening behavior in tension and compression. Further TEM micrographs shows the occurrence of <c+a> pyramidal slip in compression, which confirms the validity of the proposed model.


Author(s):  
Yuzhou Du ◽  
Mingyi Zheng ◽  
Yanfeng Ge ◽  
Bailing Jiang

Abstract The present study investigated anisotropy in tensile behavior of an extruded Mg-4.50Zn-1.13Ca (wt.%) alloy through tensile testing along different tilt angles relative to the extrusion direction. Results showed that the as-extruded Mg-4.50Zn-1.13Ca (wt.%) alloy exhibited anisotropy in tensile behavior due to the formation of basal texture. Basal slip, prismatic slip and tensile twinning were the dominant deformation modes depending on the tensile direction. Prismatic slip was the dominant deformation mode for samples with small tilt angle (θ = 0° and 22.5°). Basal slip was activated when the tilt angle was increased, which also resulted in the decrease of yield strength. Tensile twinning was responsible for the yielding of the samples with high tilt angles (θ = 67.5° and 90°). The ductility was significantly reduced at high tilt angle, which was mainly attributed to the appearance of tensile twinning during tensile deformation.


2005 ◽  
Vol 488-489 ◽  
pp. 633-636 ◽  
Author(s):  
Li Meng ◽  
Ping Yang ◽  
Zude Zhao ◽  
Wei Min Mao

Orientation mapping based on EBSD technique was applied to analyze the rules of orientation evolution of grains in AZ31 magnesium alloy. Results show that not only under deformation strain rate of 1×10-2s-1, but under 4×10-4s-1(the superplastic deformation condition), grains in all samples with initial textures rotate gradually to near basal orientation ({0002} || compression plane) at different ways, and basal texture becomes stronger with increasing strain, which indicates plastic slip plays an important role during hot deformation. Otherwise, no evident non-basal pyramidal slip of <a+c> as some studies mentioned was observed in the sample with the initial basal texture, and the basal orientation is kept unchanged during the deformation process, which suggests that basal slip is the uppermost plastic slip mechanism in this sample. In addition, the phenomenon of viscous laminar flow was observed in the sample with initial basal texture.


2007 ◽  
Vol 539-543 ◽  
pp. 3359-3364 ◽  
Author(s):  
Tetsuo Sakai ◽  
Hiroshi Utsunomiya ◽  
H. Koh ◽  
S. Minamiguchi

Magnesium alloy sheets had to be rolled at elevated temperature to avoid cracking. The poor workability of magnesium alloy is ascribed to its hcp crystallography and insufficient activation of independent slip systems. Present authors have succeeded in 1-pass heavy rolling of AZ31 magnesium alloy sheet below 473K by raising rolling speed above 1000m/min. Heavy reduction larger than 60% can be applied by 1-pass high speed rolling even at room temperature. The improvement of workability at lower rolling temperature is due to temperature rise by plastic working. The texture of heavily rolled AZ31 magnesium alloy sheet is investigated in the present study. The texture of sheets rolled 60% at room temperature was <0001>//ND basal texture. At the rolling temperature above 373K, the peak of (0001) pole tilted ±10-15 deg toward RD direction around TD axisto form a double peak texture. The texture varied through thickness. At the surface, the (0001) peak tilted ±10-15 deg toward TD direction around RD axis to form a TD-split double peak texture. The direction of (0001) peak splitting rotated 90 deg from the surface to the center of thickness. Heavily rolled magnesium alloy sheets have non-basal texture. The sheets having non-basal texture are expected to show better ductility than sheets with basal texture.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 729 ◽  
Author(s):  
Yuanzhi Wu ◽  
Bin Deng ◽  
Tuo Ye ◽  
Zhicheng Nie ◽  
Xiao Liu

High strain rate multiple forging (HSRMF) was successfully carried out on AZ31 magnesium alloy at a temperature range of 250–400 °C, and the microstructure, texture and mechanical properties were examined. Full recrystallized structure developed at a relatively lower strain due to the twining induced dynamic recrystallization (TDRX) mechanism, which is also responsible for the feasibility of HSRMF deformation at relative low temperature. The average grain sizes of the alloys high strain rate multiple forged (HSRMFed) to the accumulated strain of ∑Δε = 1.32 increased from 7.07 to 9.99 μm as the temperature ranged from 250 to 400 °C, i.e., the grain sizes of the HSRMFed alloy were less sensitive to temperature. The weakened basal texture characteristic of titled or double peak achieved was ascribed to the alteration of forging direction. The HSRMFed alloys demonstrated both excellent strength (UTS > 300 MPa) and good ductility (δ > 20%), which resulted from the combined effects of grain refinement and weakened basal texture. Therefore, HSRMF was an efficient technique to produce strong and ductile wrought AZ31 alloy.


Author(s):  
S.-J. Chen

An understanding of the micromechanisms which occur during the shock deformation of hard ceramic materials would be helpful to the development and optimization of these materials in ballistic environments. Previous studies of shock loaded alumina show evidence of plastic flow by basal slip 1/3<110> (0001), basal twinning, pyramidal slip 1/3<010>{113} and prismatic slip 1/3<101>(110), It has also been observed that the grain boundary and interphase material (e. g. glass) play an important role in determining the microstructural characteristics. In order to elucidate the response of different slip systems, as a function of the impact orientation and the magnitude of peak pressure, some experiments with single crystal alumina (sapphire) have been carried out and the preliminary results are presented here.


2013 ◽  
Vol 575-576 ◽  
pp. 402-405
Author(s):  
Yun Cai ◽  
Guirong Li ◽  
Xue Ting Yuan ◽  
Hong Ming Wang ◽  
Yu Tao Zhao ◽  
...  

The correlation between the deformation behavior and the microstructure of AZ31 magnesium alloy processed by as-extruded and ECAP is investigated in this paper. The grain size of as-extruded AZ31 magnesium alloy is about 30μm which dues to basal and twinning. Twinning is the main deformation behavior for as-extruded AZ31 magnesium alloy. The deformation of as-extruded is mainly caused by basal slip and twinning. The grains of ECAP are further refined to 6μm. With little amount of twins, the refinement of AZ31 magnesium alloy is caused by non-basal sliding. For ECAP precessed sample, grain boundary sliding happens and the proportion of high-angle grains are improved, which makes grain boundary sliding easier. The main deformation mechanism of ECAP is non-basal slip and grains boundary sliding.


2011 ◽  
Vol 314-316 ◽  
pp. 1121-1125 ◽  
Author(s):  
Yong Qi Cheng ◽  
Zhen Hua Chen

In order to develop magnesium alloy sheets with high formability at room temperature, the anisotropy of deformation behavior of AZ31 magnesium alloy sheets produced by equal channel angular rolling were examined, which were compared with that of the sheets produced by the unidirectional hot rolling. The differences in the deformation behavior of the sheets at the rolling direction (0°), 45° and the transverse direction (90°) were discussed in term of the texture and microstructure. Compared with the as-received specimens, the anisotropy of deformation behavior of AZ31 magnesium alloy sheet produced by equal channel angular rolling was enhanced, which was following with an improved ductility and a large work hardening phenomenon. These could be due to the non-basal texture, which was induced by the continuous shearing deformation during equal channel angular rolling procedure. The fracture mechanism transferred from the cleavage fracture for the unidirectional rolling to the quasi-cleavage fracture for the sheets produced by equal channel angular rolling, which proved that the non-basal texture was in favor of the ductility of magnesium alloy.


2018 ◽  
Vol 941 ◽  
pp. 1242-1247
Author(s):  
Shinji Ando ◽  
Hiroaki Rikihisa ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara

In this study, to investigate effects of yttrium and other elements for non-basal slips, magnesium alloy single crystals were stretched parallel to basal plane in various temperatures, and polycrystalline magnesium alloys were also tested to estimate contribution of non-basal slips to their tensile deformation behaviour. In pure magnesium single crystals, second order pyramidal (c+a) slip (SPCS) was observed at 298K. Above room temperature, first order pyramidal (c+a) slip (FPCS) was active. In the Mg - (0.6-0.9) Y alloy single crystals, FPCS was observed at 77K to 298K, while yield stress of the Mg-Y alloy single crystals was higher than that of pure magnesium. In tensile test of polycrystalline specimen, slips lines of non-basal slip systems such as SPCS, FPCS and prismatic slip were observed even at yielding in addition to basal slip lines. Among the non-basal slips, activities of FPCS and prismatic slips were increased with increasing strain in Mg - Y alloy polycrystals. Our study suggested that active non-basal slip system in tension parallel to basal plane is (c+a) pyramidal slip and enhanced ductility of magnesium - yttrium alloy would be caused from increased activity of FPCS by yttrium addition.


Sign in / Sign up

Export Citation Format

Share Document