Research on the Mechanical Properties and Corrosion Resistance of Mg-RE and Mg-Zn-Cu Alloys

2014 ◽  
Vol 633-634 ◽  
pp. 82-85
Author(s):  
Xin Hong Xiong ◽  
Dun Miao Quan ◽  
Jia Lin Chen ◽  
Qiao Xin Zhang ◽  
Yun Chen

Rare earth magnesium alloys and Mg-Zn-Cu alloys were prepared by gravity casting and direct squeezing casting respectively, and the corrosion performances of three kinds of Mg-Zn-Cu alloys were compared in this paper. The results indicate that adding rare earth elements and direct squeezing casting process can significantly increase the mechanical properties of magnesium alloys, and aluminum can improve the corrosion resistance of magnesium alloys.

2016 ◽  
Vol 854 ◽  
pp. 51-56 ◽  
Author(s):  
Roland Hoppe ◽  
Gerrit Kurz ◽  
Dietmar Letzig

Magnesium alloys containing rare earth elements have better properties in terms of of formability, strength and corrosion resistance. Due to the tight supply situation these elements should be partially or complete substituted, for example by calcium. Microstructural studies of casted alloys of new compositions, and the influence of various heat treatments on their microstructure are investigated. The mechanical properties of the rolled materials are also presented and discussed. The works presented in this paper are results of the ongoing BMBF project SubSEEMag.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Kai Wang ◽  
Qinghua Lu ◽  
Zexin Jiang ◽  
Yaoyong Yi ◽  
Jianglong Yi ◽  
...  

We modified the content of rare-earth elements (REE) in the flux-cored wire used to produce welds of high-strength low-alloy (HSLA) steel. The effect of REE addition on the microstructure as well as on the mechanical and electrochemical properties of the welded metal (WM) was investigated. REE-modified welded metals show very different responses during electrochemical impedance spectroscopy and the potentiodynamic polarization tests. The results indicate that the addition of REE of 0.3 wt.% facilitates a more uniform microstructure and improves both mechanical properties and corrosion resistance in welded metals.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1053-1058
Author(s):  
Hai Long Zhao ◽  
Wen Zhang ◽  
Chun Lin Zhang ◽  
Da Qian Sun ◽  
Xu Wang

The mechanical properties and corrosion behaviors of the casting Al-Cu alloys were investigated. The proportion of the two modifiers (PrxOy and LaxOy) has effects on the mechanical properties and the electrochemical corrosion behavior of the casting Al-Cu alloy. The ultimate true tensile strength of the Al-Cu alloy modified only by LaxOy is the highest (616.0 MPa). The fracture strain of the Al-Cu alloy modified by PrxOy and LaxOy is the highest (12.3%). The Al-Cu alloy modified by PrxOy has better corrosion resistance than any other Al-Cu alloy. The prominent mechanical properties should be attributed to the finer crystal grains and more homogeneously distributed nano-scale phase precipitates. The existence of continuous and compact protective Al2O3 and RE-O films enhanced the corrosion resistance of the modified Al-Cu alloy during the corrosion process.


2014 ◽  
Vol 14 (1) ◽  
pp. 13-16 ◽  
Author(s):  
K.N. Braszczyńska-Malik

Abstract The results of some mechanical properties of four Mg-5Al-xRE-0.4Mn (x = 1 - 5) alloys are presented. The microstructure of experimental alloys consisted of an α-Mg phase and an α+γ semi-divorced eutectic, Al11RE3 phase and an Al10RE2Mn7 intermetallic compound. For gravity casting in metal mould alloys, Brinell hardness, impact strength, tensile and compression properties at ambient temperature were determined. The performed mechanical tests allowed the author to determine the proportional influence of the mass fraction of rare earth elements in the alloys on their tensile strength, yield strength, compression strength and Brinell hardness. The impact strength of the alloys slightly decreases with a rise in the rare earth elements mass fraction.


2005 ◽  
Vol 488-489 ◽  
pp. 839-844 ◽  
Author(s):  
Young Gee Na ◽  
Dan Eliezer ◽  
Kwang Seon Shin

The development of new components with magnesium alloys for the automotive industry has increased in recent years due to their high potential as structural materials for low density and high strength/weight ratio demands. However, the limited mechanical properties of the magnesium alloys have led to search new kind of magnesium alloys for better strength and ductility. The main objective of this research is to investigate the mechanical properties and the corrosion behavior of new wrought magnesium alloys; Mg-Zn-Ag (ZQ) and Mg-Zn-Si (ZS) alloys. The ZQ6X and ZS6X samples were fabricated using hot extrusion method. Tensile tests and immersion tests were carried out on the specimens from the extruded rods, which contained different amounts of silver or silicon, in order to evaluate the mechanical properties and corrosion behavior. The microstructure was examined using optical and electron microscopy (TEM and SEM) and EDS. The results showed that the addition of silver improved the mechanical properties but decreased the corrosion resistance. The addition of silicon improved both mechanical properties and corrosion resistance. These results can be explained by the effects of alloying elements on the microstructures of the Mg-Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallization behavior.


2020 ◽  
Vol 167 (13) ◽  
pp. 131504
Author(s):  
Paweł Nowak ◽  
Michał Mosiałek ◽  
Dmitry S. Kharitonov ◽  
Janusz Adamiec ◽  
Agata Turowska

2019 ◽  
Vol 69 (12) ◽  
pp. 3382-3385
Author(s):  
Stefan Lupescu ◽  
Corneliu Munteanu ◽  
Bogdan Istrate ◽  
Kamel Earar

The latest magnesium alloys are widely used in the medical field, especially for biodegradable implants. Magnesium alloys are very attractive for applications in different structures in the automotive, aerospace, printing and even medical fields [1]. It should be noted that some magnesium alloys have excellent damping properties as well as good mechanical properties, making them promising to respond to high damping needs for vibration control [1,2]. Although widely used, magnesium has a low corrosion resistance. To improve this resistance, different types of magnesium based on aluminum, such as Ca, Mn, Zn, Zr, Si and rare rare (Y, Gd ..), can be developed. The main purpose of this paper is to investigate the properties of a primary alloy based on the Mg-1Y-0,5Zr system with different concentrations of Zr (0.5,1,2) used in the development of alloys based on the biodegradability of Mg. Surface morphology was characterized by electronic scanning microscopy (SEM), X-ray diffraction (XRD) and optical microscopy. After XRD analysis, it was observed that certain specific compounds were made up of Mg2Ca, MgZr, Mg2Y, Mg24Y5 having the main Mg formed in the hexagonal structure, but Mg24Y5 are the cubic crystalline structure. Also, the microhardness of the alloy is higher than pure Mg and the scratch mark is smaller than that of pure Mg. The corrosion resistance was developed using linear voltammetry in specific medium and corrosion showed that it had significantly decreased for masteralloy. As a final conclusion, the structural properties of this model are recommended for use as medical implants.


Sign in / Sign up

Export Citation Format

Share Document