scholarly journals The Mechanical Properties and Corrosion Resistance of Magnesium Alloys with Different Alloying Elements for Bone Repair

Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 271 ◽  
Author(s):  
Guangyi Lin ◽  
Minfang Chen ◽  
Yun Zhao ◽  
Yesudass Sasikumar ◽  
Di Tie

This paper reviews the outcome of bismuth and antimony trappings on the microstructure and mechanical behavior of an assortment of commercial magnesium alloys. Various compositions of the Bi and Sb were discussed along with/without combination of other alloying elements. These additions have revealed to be resulted in the formation of Mg3Bi2 , Mg3Sb2 intermediate phases when added upon with corresponding alloying elements. Moreover the reasons for the observed changes due to the addition of these alloying elements were also reviewed. It is found that the accumulation of Bi phase as well as intermetallics and Sb intermediates has greatly improved the microstructure belonging to the as cast magnesium alloys thereby improving both mechanical and thermo-mechanical properties. It is also observed in the review that addition of thesealloying elements acted as grain refiner and improved the corrosion resistance of commercial magnesium alloys.


2005 ◽  
Vol 488-489 ◽  
pp. 839-844 ◽  
Author(s):  
Young Gee Na ◽  
Dan Eliezer ◽  
Kwang Seon Shin

The development of new components with magnesium alloys for the automotive industry has increased in recent years due to their high potential as structural materials for low density and high strength/weight ratio demands. However, the limited mechanical properties of the magnesium alloys have led to search new kind of magnesium alloys for better strength and ductility. The main objective of this research is to investigate the mechanical properties and the corrosion behavior of new wrought magnesium alloys; Mg-Zn-Ag (ZQ) and Mg-Zn-Si (ZS) alloys. The ZQ6X and ZS6X samples were fabricated using hot extrusion method. Tensile tests and immersion tests were carried out on the specimens from the extruded rods, which contained different amounts of silver or silicon, in order to evaluate the mechanical properties and corrosion behavior. The microstructure was examined using optical and electron microscopy (TEM and SEM) and EDS. The results showed that the addition of silver improved the mechanical properties but decreased the corrosion resistance. The addition of silicon improved both mechanical properties and corrosion resistance. These results can be explained by the effects of alloying elements on the microstructures of the Mg-Zn alloys such as grain size and precipitates caused by the change in precipitation and recrystallization behavior.


2019 ◽  
Vol 69 (12) ◽  
pp. 3382-3385
Author(s):  
Stefan Lupescu ◽  
Corneliu Munteanu ◽  
Bogdan Istrate ◽  
Kamel Earar

The latest magnesium alloys are widely used in the medical field, especially for biodegradable implants. Magnesium alloys are very attractive for applications in different structures in the automotive, aerospace, printing and even medical fields [1]. It should be noted that some magnesium alloys have excellent damping properties as well as good mechanical properties, making them promising to respond to high damping needs for vibration control [1,2]. Although widely used, magnesium has a low corrosion resistance. To improve this resistance, different types of magnesium based on aluminum, such as Ca, Mn, Zn, Zr, Si and rare rare (Y, Gd ..), can be developed. The main purpose of this paper is to investigate the properties of a primary alloy based on the Mg-1Y-0,5Zr system with different concentrations of Zr (0.5,1,2) used in the development of alloys based on the biodegradability of Mg. Surface morphology was characterized by electronic scanning microscopy (SEM), X-ray diffraction (XRD) and optical microscopy. After XRD analysis, it was observed that certain specific compounds were made up of Mg2Ca, MgZr, Mg2Y, Mg24Y5 having the main Mg formed in the hexagonal structure, but Mg24Y5 are the cubic crystalline structure. Also, the microhardness of the alloy is higher than pure Mg and the scratch mark is smaller than that of pure Mg. The corrosion resistance was developed using linear voltammetry in specific medium and corrosion showed that it had significantly decreased for masteralloy. As a final conclusion, the structural properties of this model are recommended for use as medical implants.


2006 ◽  
Vol 510-511 ◽  
pp. 374-377 ◽  
Author(s):  
Jeong Min Kim ◽  
Bong Koo Park ◽  
Joong Hwan Jun ◽  
Ki Tae Kim ◽  
Woon Jae Jung

Small amounts of minor alloying elements such as RE and Sr were added to Mg- 8wt%Al-5wt%Zn (AZ91D+4%Zn), and their effects on the microstructure, mechanical properties and corrosion resistance were investigated. The microstucture of the investigated alloys could be characterized by dendritic Mg, Mg17Al12, a quasi-crystalline Zn-rich phase, and Al4RE (if RE is added). Although the tensile strength of alloys was not improved, the creep strength was significantly enhanced by the additions of minor alloying elements. No apparent influence of the additions could be found on the corrosion resistance.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1993
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo

Magnesium alloys are a promising structural material to be used as a substitute for metals traditionally used in the automotive and aircraft sector. However, magnesium alloys have poor mechanical properties and corrosion resistance. These handicaps can be overcome through the application of coatings with improved properties. Laser cladding is a potential coating fabrication process. Furthermore, the low vaporization temperature of magnesium and the coating-substrate dilution problems increase the difficulty to coat magnesium substrates. The aim of this research is to analyze the state of art in magnesium laser cladding and investigate the effect of the most important fabrication parameters on the interaction of the different coating-substrate systems used on the mechanical properties and corrosion resistance. In addition, this work provides a guidance on laser cladding best practices for these alloys. Knowledge of how the different coating manufacturing parameters affect the final surface properties of magnesium alloys is essential for the implantation of these materials in applications for which they are currently limited.


2019 ◽  
Vol 33 (10) ◽  
pp. 1348-1372 ◽  
Author(s):  
Yang Chen ◽  
Jinhe Dou ◽  
Huijun Yu ◽  
Chuanzhong Chen

Magnesium-based alloys exhibit biodegradable, biocompatible and excellent mechanical properties which enable them to serve as ideal candidate biomedical materials. In particular, their biodegradable ability helps patients to avoid a second surgery. The corrosion rate, however, is too rapid to sustain the healing process. Alloying is an effective method to slow down the corrosion rate. However, currently magnesium alloys used as biomaterials are mostly commercial alloys without considering cytotoxicity from the perspective of biosafety. This article comprehensively reviews the status of various existing and newly developed degradable magnesium-based alloys specially designed for biomedical application. The effects of critical alloying elements, compositions, heat treatment and processing technology on the microstructure, mechanical properties and corrosion resistance of magnesium alloys are discussed in detail. This article covers Mg–Ca based, Mg–Zn based, Mg–Sr based, Mg–RE based and Mg–Cu-based alloy systems. The novel methods of fabricating Mg-based biomaterials and surface treatment on Mg based alloys for potential biomedical applications are summarized.


2014 ◽  
Vol 633-634 ◽  
pp. 82-85
Author(s):  
Xin Hong Xiong ◽  
Dun Miao Quan ◽  
Jia Lin Chen ◽  
Qiao Xin Zhang ◽  
Yun Chen

Rare earth magnesium alloys and Mg-Zn-Cu alloys were prepared by gravity casting and direct squeezing casting respectively, and the corrosion performances of three kinds of Mg-Zn-Cu alloys were compared in this paper. The results indicate that adding rare earth elements and direct squeezing casting process can significantly increase the mechanical properties of magnesium alloys, and aluminum can improve the corrosion resistance of magnesium alloys.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1049 ◽  
Author(s):  
Gui Lou ◽  
Shumin Xu ◽  
Xinying Teng ◽  
Zhijian Ye ◽  
Peng Jia ◽  
...  

Magnesium alloys act as ideal biomedical materials with good biocompatibility. In this paper, the extruded biomedical Mg-6Zn-0.5Nd-0.5/0.8Ca alloys were prepared and their microstructure, mechanical properties and corrosion properties were investigated. The results showed that the surfaces of Mg-6Zn-0.5Nd-0.5/0.8Ca alloys extruded at medium temperature were smooth and compact without cracks. The tensile strength and elongation of Mg-6Zn-0.5Nd-0.5/0.8Ca alloys were 222.5 MPa and 20.2%, and 287.2 MPa and 18.4%, respectively. A large number of dislocations were generated in the grains and on grain boundaries after the extrusion. The alloy was immersed in simulating body fluid (SBF) for the weightlessness corrosion, and the corrosion products were analyzed by FTIR, SEM equipped with EDS. It was found that the corrosion rate of Mg-6Zn-0.5Nd-0.5Ca and Mg-6Zn-0.5Nd-0.8Ca alloy were 0.82 and 2.98 mm/a, respectively. Furthermore, the compact layer was formed on the surface of the alloy, which can effectively hinder the permeation of Cl− and significantly improve the corrosion resistance of magnesium alloys.


Sign in / Sign up

Export Citation Format

Share Document