Research on ASIC Firewall Based on State Detection Technology

2014 ◽  
Vol 644-650 ◽  
pp. 3283-3286 ◽  
Author(s):  
Shun Qing Wang ◽  
Hai Yan Chen

Being important in the field of network security, it is essential to study the firewall technology that has been an indispensable part of computer networks. This paper describes a new design and implementation of ASIC firewall architecture based on the state detection technology. Implementation and measurements in a real network show that the proposed system can provide high performance with reliability, flexibility, and security.

Author(s):  
A.Ya. Kibirov ◽  

The article uses methods of statistical analysis, deduction and analogy to consider programs at the Federal, regional and economic levels, which provide for measures aimed at improving the technical equipment of agricultural producers. Particular attention is paid to the acquisition of energy-saving, high-performance agricultural machinery and equipment used in the production and processing of agricultural products. An assessment of the effectiveness of state support for updating the material and technical base of agriculture is given. Based on the results of the study, conclusions and recommendations were formulated.


2020 ◽  
pp. 1-21
Author(s):  
Caroline Doyle

ABSTRACT In the last ten years, Medellín, Colombia has undergone significant socioeconomic improvements and a reduction in homicides. By drawing from qualitative data collected in Medellín, this article shows how, despite these improvements, residents in the marginalized neighborhoods maintain a perception that the state is unable or unwilling to provide them with services, such as employment and order or social control. Criminal gangs in these neighborhoods appear to rely on, and even exploit, the weakness of the state, as they are able to get citizens to perceive them as more reliable and legitimate than the state. This article argues that it is important for Latin American policymakers to promote citizen engagement in the design and implementation of policies to reduce current levels of violence.


2017 ◽  
Vol 19 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Maria Anna Jankowska ◽  
Piotr Jankowski

The article presents the Idaho Geospatial Data Center (IGDC), a digital library of public-domain geographic data for the state of Idaho. The design and implementation of IGDC are introduced as part of the larger context of a geolibrary model. The article presents methodology and tools used to build IGDC with the focus on a geolibrary map browser. The use of IGDC is evaluated from the perspective of accessa and demand for geographic data. Finally, the article offers recommendations for future development of geospatial data centers.


1992 ◽  
Vol 36 (5) ◽  
pp. 821-828 ◽  
Author(s):  
K. H. Brown ◽  
D. A. Grose ◽  
R. C. Lange ◽  
T. H. Ning ◽  
P. A. Totta

2021 ◽  
Vol 14 (4) ◽  
pp. 1-28
Author(s):  
Tao Yang ◽  
Zhezhi He ◽  
Tengchuan Kou ◽  
Qingzheng Li ◽  
Qi Han ◽  
...  

Field-programmable Gate Array (FPGA) is a high-performance computing platform for Convolution Neural Networks (CNNs) inference. Winograd algorithm, weight pruning, and quantization are widely adopted to reduce the storage and arithmetic overhead of CNNs on FPGAs. Recent studies strive to prune the weights in the Winograd domain, however, resulting in irregular sparse patterns and leading to low parallelism and reduced utilization of resources. Besides, there are few works to discuss a suitable quantization scheme for Winograd. In this article, we propose a regular sparse pruning pattern in the Winograd-based CNN, namely, Sub-row-balanced Sparsity (SRBS) pattern, to overcome the challenge of the irregular sparse pattern. Then, we develop a two-step hardware co-optimization approach to improve the model accuracy using the SRBS pattern. Based on the pruned model, we implement a mixed precision quantization to further reduce the computational complexity of bit operations. Finally, we design an FPGA accelerator that takes both the advantage of the SRBS pattern to eliminate low-parallelism computation and the irregular memory accesses, as well as the mixed precision quantization to get a layer-wise bit width. Experimental results on VGG16/VGG-nagadomi with CIFAR-10 and ResNet-18/34/50 with ImageNet show up to 11.8×/8.67× and 8.17×/8.31×/10.6× speedup, 12.74×/9.19× and 8.75×/8.81×/11.1× energy efficiency improvement, respectively, compared with the state-of-the-art dense Winograd accelerator [20] with negligible loss of model accuracy. We also show that our design has 4.11× speedup compared with the state-of-the-art sparse Winograd accelerator [19] on VGG16.


2018 ◽  
Vol 7 (2) ◽  
pp. 61-67
Author(s):  
Iga Revva Princiss Jeinever

Computer networks are basically not safe to access freely. Security gaps in the network can be seen by irresponsible people with various techniques. Opening a port for access carries a high risk of being attacked by an attacker. In this connection, network administrators are required to work more to be able to secure the computer network they manage. One form of network security that is often used by network administrators in server management is through remote login such as ports on telnet, SSH, etc. A port that is always open is a network security hole that can be used by people who are not responsible for logging into the server. Focusing on these problems, in this study, Random Port Knocking is the right way and can be used to increase network security. With Random Port Knocking, the port will be opened as needed, the port will automatically change when it fails to log in more than three times and IP will automatically be blocked and access will not continue so that attacks on the network can be avoided and network security stability can be further improved. The final result of this research shows that the method applied in this research makes server safe. Because port randomization and IP block make irresponsible parties try harder to penetrate firewall walls.


Sign in / Sign up

Export Citation Format

Share Document