Chain Tracking System for Solar Thermal Collector

2014 ◽  
Vol 658 ◽  
pp. 35-40 ◽  
Author(s):  
Daniela Ciobanu ◽  
Codruta Jaliu ◽  
Radu Saulescu

The use of renewable energy sources represents a continuous concern for the researchers around the world. The main source of renewable energy, the sun can be used for producing hot water / heating or electric energy, by means of solar collectors. The concentrating solar collectors contain tracking systems for orientation on one or two axes. The tracking system for the elevation motion has to ensure a reduced angular stroke. The mechanism that is usually included in the system structure is of linkage type, being driven by a linear actuator. The mechanism has the advantages of low complexity and reduced cost. In the case of diurnal motion, the angular stroke is larger, being usually obtained with gears or chain drives. The actuation is achieved by motor-reducers with high transmission ratios and costs. In order to reduce the costs, mechanisms containing linkages driven by linear actuators are proposed in literature. These tracking systems have the disadvantage of large overall dimensions. To reduce this disadvantage, the paper proposes a new variant of chain tracking system driven by a linear actuator. Then the proposed tracking system is structurally optimized, process that generates 6 new variants of mechanisms. These solutions eliminate the problems created by the hyperstatical constraints and avoid blocking in case of assembling errors.

Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 41
Author(s):  
Dorota Anna Krawczyk ◽  
Antonio Rodero ◽  
Agata Witkowska ◽  
Bernadetta Wądołowska

This research aims to show the advisability of usage of selected renewable energy sources for domestic hot water (DHW) installations in buildings located in Poland and Spain. The analysis was conducted for a typical kindergarten, an example of buildings with high density of people and stable profile of usage, as opposed to schools which are closed during summer holidays. We took into account national regulations to estimate heat demand. Then applying solar collectors and heat pumps to use as a monovalent energy sources were considered. The total cost of the system with solar collectors in Poland was found to be 1.4 times higher than in Spain, whereas the difference in a case of air heat pumps was 18%. Moreover efficiency of solar collector and heat pump systems were found as 49.56% for Warsaw, 52.29% for Madrid with coefficient of performance (COP) 2.2 and 2.55 respectively, therefore simple payback time (SPBT) of investment was estimated in a range between 6–12 years for solar collectors and 5–6 years for heat pumps.


2019 ◽  
Vol 116 ◽  
pp. 00084
Author(s):  
Krystian Szczerbak

The climate in Poland is slightly disparate in each region. The differences in temperature not always come along with the intensity of solar radiation in 5 climate zones. South of the country is colder, but well irradiated by the Sun and northern regions have milder climate, but are less irradiated. This fact alone makes people consider the suitability and safety of using renewable energy sources such as air-to-water heat pumps, solar collectors and photovoltaics instead of more traditional, fossil fuel powered sources. This paper presents a comparison analysis of energy demand and the cost for heating in a group of single-family buildings by 4 variants (gas boiler, gas boiler and solar collectors, air-to-water heat pump, air-to-water heat pump and photovoltaics) in 5 chosen cities in each polish climate zone. Calculations were done for space heating and domestic hot water energy demand, CO2 emissions and cumulative costs for all variants and locations. The results confirm the inconsistency of polish climate and have shown profitability and utility of renewable energy sources.


Smart Cities ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 471-495
Author(s):  
Viktor Stepaniuk ◽  
Jayakrishnan Pillai ◽  
Birgitte Bak-Jensen ◽  
Sanjeevikumar Padmanaban

The smart active residential buildings play a vital role to realize intelligent energy systems by harnessing energy flexibility from loads and storage units. This is imperative to integrate higher proportions of variable renewable energy generation and implement economically attractive demand-side participation schemes. The purpose of this paper is to develop an energy management scheme for smart sustainable buildings and analyze its efficacy when subjected to variable generation, energy storage management, and flexible demand control. This work estimate the flexibility range that can be reached utilizing deferrable/controllable energy system units such as heat pump (HP) in combination with on-site renewable energy sources (RESs), namely photovoltaic (PV) panels and wind turbine (WT), and in-house thermal and electric energy storages, namely hot water storage tank (HWST) and electric battery as back up units. A detailed HP model in combination with the storage tank is developed that accounts for thermal comforts and requirements, and defrost mode. Data analytics is applied to generate demand and generation profiles, and a hybrid energy management and a HP control algorithm is developed in this work. This is to integrate all active components of a building within a single complex-set of energy management solution to be able to apply demand response (DR) signals, as well as to execute all necessary computation and evaluation. Different capacity scenarios of the HWST and battery are used to prioritize the maximum use of renewable energy and consumer comfort preferences. A flexibility range of 22.3% is achieved for the scenario with the largest HWST considered without a battery, while 10.1% in the worst-case scenario with the smallest HWST considered and the largest battery. The results show that the active management and scheduling scheme developed to combine and prioritize thermal, electrical and storage units in buildings is essential to be studied to demonstrate the adequacy of sustainable energy buildings.


2021 ◽  
Vol 6 ◽  
pp. 26-34
Author(s):  
Vladimir Poltavets ◽  
Irina Kolchanova

The continuous growth of renewable energy sources has drastically changed the paradigm of electric energy generation and distribution. Flywheel energy storage systems are a clean and efficient method to level supply and demand in energy grids, including those incorporating renewable energy generation. Environmental safety, resilience, high power capacity and quality make flywheel energy storage very promising. This paper contains a review of flywheel energy storage systems, already being in operation, and applications of flywheel energy storage in general.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Ligan Budi Pratomo ◽  
Nazaruddin Sinaga

Energy use always increases, especially fossil energy. Through the National Energy Policy, the government continues to strive to increase the role of new and renewable energy sources so as to reduce dependence on fossil energy. Solar power generation is a type of renewable energy generator that capable to convert solar energy to electric energy. The main components of solar power generatios are batteries, solar panels, charger controllers, and inverters.  Solar power generations technology itself is always being developed, such as automatic monitoring and sun tracking systems designed to improve system performance. One of the applications of solar power generations is in the household sector. In this sector consumes 49% of the national electricity energy in 2018. This type of generator is categorized as a roof solar power generations. Based on existing data, there were 1400  roof solar power generations users in September 2019. The development of solar energy utilization for the household sector is very appropriate because it can help achieve renewable energy about 23% in 2025 and 31% in 2050 in the national energy mix.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 687 ◽  
Author(s):  
Lizhi Zhang ◽  
Fan Li ◽  
Bo Sun ◽  
Chenghui Zhang

The combined cooling, heating, and power (CCHP) systems coupled with solar energy and biomass energy can meet the needs of island or rural decentralized and small-scale integrated energy use, which have become increasingly popular in recent years. This study presents a renewable energy sources integrated combined cooling, heating, and power (RES-CCHP) system, driven by a biogas fueled internal combustion engine (ICE) and photovoltaic (PV) panels, which is different from the traditional natural gas CCHP system. Owing to the solar energy volatility and the constraint of biomass gas production, the traditional optimization design method is no longer applicable. To improve the energetic, economic and environmental performances of the system, an integrated design method with renewable energy capacity, power equipment capacity and key operating parameters as optimization variables is proposed. In addition, a case study of a small farm in Jinan, China, is conducted to verify the feasibility of the proposed RES–CCHP system structure and the corresponding optimal operation strategy. The results illustrate that the implementation of the optimal design is energy-efficient, economical and environmentally-friendly. The values of primary energy saving ratio, annual total cost saving rate and carbon emission reduction ratio are 20.94%, 11.73% and 40.79%, respectively. Finally, the influence of the volatility of renewable energy sources on the optimization method is analyzed, which shows that the RES–CCHP system and the method proposed are robust.


10.14311/986 ◽  
2007 ◽  
Vol 47 (4-5) ◽  
Author(s):  
E. V. Mgaya ◽  
Z. Müller

This paper deals with the general problem of utilizing of renewable energy sources to generate electric energy. Recent advances in renewable energy power generation technologies, e.g., wind and photovoltaic (PV) technologies, have led to increased interest in the application of these generation devices as distributed generation (DG) units. This paper presents the results of an investigation into possible improvements in the system voltage profile and reduction of system losses when adding wind power DG (wind-DG) to a distribution system. Simulation results are given for a case study, and these show that properly sized wind DGs, placed at carefully selected sites near key distribution substations, could be very effective in improving the distribution system voltage profile and reducing power losses, and hence could  improve the effective capacity of the system. 


Sign in / Sign up

Export Citation Format

Share Document