scholarly journals Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 687 ◽  
Author(s):  
Lizhi Zhang ◽  
Fan Li ◽  
Bo Sun ◽  
Chenghui Zhang

The combined cooling, heating, and power (CCHP) systems coupled with solar energy and biomass energy can meet the needs of island or rural decentralized and small-scale integrated energy use, which have become increasingly popular in recent years. This study presents a renewable energy sources integrated combined cooling, heating, and power (RES-CCHP) system, driven by a biogas fueled internal combustion engine (ICE) and photovoltaic (PV) panels, which is different from the traditional natural gas CCHP system. Owing to the solar energy volatility and the constraint of biomass gas production, the traditional optimization design method is no longer applicable. To improve the energetic, economic and environmental performances of the system, an integrated design method with renewable energy capacity, power equipment capacity and key operating parameters as optimization variables is proposed. In addition, a case study of a small farm in Jinan, China, is conducted to verify the feasibility of the proposed RES–CCHP system structure and the corresponding optimal operation strategy. The results illustrate that the implementation of the optimal design is energy-efficient, economical and environmentally-friendly. The values of primary energy saving ratio, annual total cost saving rate and carbon emission reduction ratio are 20.94%, 11.73% and 40.79%, respectively. Finally, the influence of the volatility of renewable energy sources on the optimization method is analyzed, which shows that the RES–CCHP system and the method proposed are robust.

2009 ◽  
Vol 15 (1) ◽  
pp. 25-36
Author(s):  
Branko Blazevic

In this paper, the author focuses on the fundamental hypothesis that the adoption of a concept of regional sustainable development and the use of renewable energy sources are preconditions to organising an acceptable regional tourism offering based on an eco-philosophy The renewable development of tourism regions is the basic framework for research regarding opportunities for introducing renewable energy sources such as hydro energy, wind power, solar energy, geothermal energy, and biomass energy. The purpose of this paper is to indicate the real opportunities that exist for substituting conventional energy sources with renewable ones and the role of renewables in regional development from economic, environmental and sociological viewpoints. It should also be noted that renewable energy sources have a strong regional importance and can contribute significantly to local employment.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
T. Pimonenko ◽  
O. Lyulyov ◽  
N. Letunovska ◽  
O. Lytvynenko ◽  
A. Nazarenko

The article aims to study current trends in the use of solar energy in Ukraine and the world as one of the main directions of decarbonization of the national economy. The authors systematize the prospects, advantages and disadvantages of the development of renewable energy sources. They conducted a comparative analysis of the "efficiency" of solar energy in some countries and Ukraine. The authors determined that the leading position in terms of the share of energy consumed from renewable sources is occupied by countries with developed economies due to the availability of effective motivational mechanisms. From the experience of EU countries, the authors concluded that renewable energy sources form a prerequisite for obtaining additional socio-economic and environmental effects. In the presence of favorable market conditions, renewable energy sources can increase the level of energy security in the country and its energy independence. The article analyzes the legislation of Ukraine on stimulating the development of alternative energy. The authors proposed two opposed ways of further developing solar energy in Ukraine. In particular, the country can implement methods of using alternative energy, which developed countries have successfully implemented. Another area involves increasing research and innovation in implementing, using, maintaining, and utilizing energy-generating devices from alternative energy sources. Despite the polarity of the proposed directions for further development of renewable energy, in both cases, the state policy on attracting investment and promoting the use of energy from alternative energy sources is crucial. In addition, the authors noted the benefits for society from the development and implementation of alternative energy sources. The scaling up and promotion of energy production technologies from alternative sources can reduce carbon emissions, which has been an urgent problem globally.


Author(s):  
N. V. Tsopa ◽  
A. E. Dikarev

in the article provides a comparative analysis of the development of solar energy in the world, in the European Union, in Russia and in Crimea; the advantages and disadvantages of the use of solar energy, the features of the use of renewable energy sources are considered, the use of solar energy in the Crimea is justified; describes the mechanism of a feasibility study for the use of autonomous power supply for low-rise buildings in Crimea.


2021 ◽  
Vol 5 (3) ◽  
pp. 56-61
Author(s):  
Ahmet Erhan AKAN

The decrease in fossil-based energy sources and increasing environmental problems increase the tendency to renewable energy sources day by day. The potential of renewable energy sources differs according to the region where the energy will be produced. For this reason, it is crucial to conduct a good feasibility study that deals with the selected systems from a technical and economic point of view before making an investment decision on energy conversion systems based on renewable energy sources. In this study, the most suitable equipment and capacities were investigated by examining the techno-economic analysis of a hybrid system created with wind-solar renewable energies for a detached house, which is considered off-grid, in a rural area of Tekirdağ province (40o58.7ı N, 27o30.7ı E). Investigations were carried out using the HOMER Pro (Hybrid Optimization Model for Electric Renewable) program. The wind and solar energy potential of Tekirdağ province were obtained from the NASA renewable energy resources database added to the HOMER Pro program. The daily electricity requirement of the sample house was chosen as 11.27 kWh, and the current peak electrical load was chosen as 2.39 kW. A wind turbine is connected to the AC busbars, solar collectors and battery group connected to the DC busbars, and a converter that converts energy between AC and DC busbars in the energy conversion system. In order to determine the optimum capacities of the system elements, 27486 different simulations were performed by HOMER Pro. The selection of the most suitable system among these was determined according to the lowest net present cost (NPC) value. In addition, the energy production capacities that will occur in the case of different wind speeds were also investigated. Accordingly, the system to be installed with a solar panel with a capacity of 6.25 kW, PV-MPPT with a capacity of 1 kW, 2 wind turbines with a capacity of 1 kW, 8 Lithium-ion batteries with a capacity of 6V-167 Ah, and a converter with a capacity of 2.5 kW has been determined will generate electrical energy of 5433 kWh per year. In addition, it has been determined that 61.8% of this produced energy will be obtained from solar energy and 38.2% from wind energy, and the simple payback period of the investment will be 14 years. It is thought that this study will provide valuable information to researchers and investors.


2015 ◽  
Vol 9 (1) ◽  
pp. 55-62
Author(s):  
János Szendrei ◽  
Edit Szűcs ◽  
Gábor Grasselli

The most sustainable energy is the energy not used. Best way to (not) use energy is the proper design of a facility or an energy consuming system. The remaining energy needs have to be covered with energy utilisation of waste materials, renewable energy sources and, until the previous solutions are not sufficient to satisfy the energy demands, the last is the use of conventional fossil and nuclear energy sources. In terms of renewable energy, biomass has an important role today. However, there is a difference between available inputs and utilisation when considering biomass energy possibilities in rural and urban context. This paper suggests biomass energy possibilities that are recommendable in rural context: possibilities of solid biomass combustion, of liquid biofuels and of anaerobe digestion. Also important are possibilities of solid biomass combustion and wet biomass digestion for urban energy production, although with some remarks on system considerations of urban biomass. Most advanced solutions for sustainable management of biomass energy include circular systems, both in rural and urban context, as recommended.


Author(s):  
Liudmila V. Nefedova ◽  
Alexander Alexsvitch Solovyev ◽  
Olena Popova

The prospects of increasing access to electricity for the population of rural areas of Africa are considered. The main international funds and organizations aimed at sustainable energy development in Africa are described. An analysis of the state and possible options for using renewable energy sources for this purpose in decentralized energy supply through the creation of mini-grids or stand-alone systems is given. The risks by developing renewable energy sources in rural areas and modern mechanisms for financing in solar energy are presented.


Author(s):  
Hanna Irena Jędrzejuk

This chapter describes a general issue of selecting renewable energy sources (RES) and technical systems. To achieve the nearly zero-energy building (nZEB) standard, application of an RES (e.g., solar, wind, geothermal, hydropower, and biomass energy) is necessary. Each type of RES has specific characteristics and can be used to produce electricity and/or heat in certain systems. A short review of various systems using renewable energy sources is presented. To find the required and satisfactory solution that guaranties meeting the nZEB standard, an analysis must be carried out considering a number of aspects: local availability, structure and time-dependence of energy demand, building construction, economic conditions, legal regulations, and specific requirements. Finally, two examples of modernisation towards the nZEB standard are included.


Author(s):  
Talip Arsu

Electricity generation, one of the renewable energy sources (RES), delivers a solution for various problems such as energy efficiency, energy supply security, reducing foreign dependency, and especially, environmental concerns. However, the solutions provided for these problems bring along the question of which RESs are produced more effectively. Therefore, in this research, RESs used for electricity generation in Turkey were analyzed by using generation data to show which one is more effective. Bi-objective multiple-criteria data envelopment analysis (BiO-MCDEA) method, a goal programming-based efficiency determination method, was used for the efficiency analysis conducted for five years between the years of 2014 and 2018. As a result of the analysis, geothermal energy came into prominence as the most effective RES for all of the years included in the solution. Geothermal energy was followed by biomass energy, wind energy, hydroelectric, and solar energy, respectively.


Sign in / Sign up

Export Citation Format

Share Document