Energy Harvesting Shock Absorbers for Vehicles: Design, Modeling and Simulation

2014 ◽  
Vol 672-674 ◽  
pp. 1169-1174 ◽  
Author(s):  
Wei Wu Chen ◽  
Zu Tao Zhang

Energy harvesting shock absorber is used for harvesting the kinetic energy in the vehicle suspension vibration. In this paper, we present design, modeling, and simulation of a novel energy harvesting shock absorber based on rack and pinion mechanism. The shock absorber consists of three main components: the mechanical vibration input, the transmission module, and the micro-generator module. The shock absorber is installed between the vehicle frame and chassis to obtain a relative linear motion acting as mechanical vibration input. The function of transmission mechanism module is to convert the relative linear motion to a unidirectional rotation for the input shaft of micro-generator. The micro-generator will produce electricity due to the input shaft rotating in one direction. This shock absorber was tested in simulation condition, and the last performance evaluation demonstrates the validity of the proposed energy harvesting shock absorber.

Author(s):  
Sijing Guo ◽  
Lin Xu ◽  
Yilun Liu ◽  
Xuexun Guo ◽  
Lei Zuo

Energy-Harvesting Shock Absorber (EHSA), as a large-scale energy-harvesting mechanism for recovering suspension vibration energy, has been studied for years. A design of the regenerative shock absorber with Mechanical Motion Rectifier (MMR) has been proved to be more reliable and efficient. This paper reports a comprehensive study of the influence of MMR-based Energy-Harvesting Shock Absorber (MMR-EHSA) on vehicle dynamics performances. Models of MMR-EHSA and vehicle with MMR-EHSA with two degrees of freedom are created. Simulations are conducted on five typical vehicles, including passenger car, bus and three types of trucks. The ride characteristics of comfort, road handling and energy recovery are evaluated on these vehicles under various MMR rotational inertia and harvesting damping. The simulation results show that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously under certain conditions over the traditional shock absorbers, which broadens our knowledge of MMR-EHSA’s applicable scenarios.


2013 ◽  
Vol 805-806 ◽  
pp. 477-481 ◽  
Author(s):  
Zhi Feng Chao ◽  
Zu Tao Zhang

Green, safe and efficient road energy harvesting is a challenge for road traffic application. In this paper, we present a novel road energy harvester system based on sliding deceleration design and model for the purposes of energy harvesting involved in road traffic. The main components of the system consist of sliding deceleration mechanism, rack and pinion transmission, mechanical motion rectifier, which are used to generate electricity from the vibration of the sliding plate excited by vehicles passing by. Compared with the conventional road harvester using the speed bump, the proposed road energy harvester system has potential advantages in reducing the dependence on the speed bump, increasing the safety of vehicle when passing by and expanding its application. The final experimental results show the validity of our method under simulation condition.


Author(s):  
Lingshuai Meng ◽  
Lin Xu ◽  
Junyi Zou ◽  
Jia Mi ◽  
Sijing Guo

With the increasing of the train load, the wheel-rail wear is worsening, the maintaining and replacing cycle is shortened enormously, the problem of replacing steel rail and wheel prematurely not only make the railway transportation cost increasing, but also affect the railway normal transportation. This paper proposes a novel type of active energy self-supply radial steering technology — the parallel interconnection hydraulic-electric energy-harvesting active radial steering bogie system. This system is a typical “machine – electric – hydraulic” coupling system, which includes parallel interconnection hydraulic-electric energy-harvesting suspension and active radial steering bogie, consisting of mechanical, electronic, hydraulic and control subsystems internally. In this system, the radial steering bogie is equipped with four HESA, and HESA can reuse the mechanical vibration energy which used to be transformed into waste heat by the shock absorber. In this system, the mechanical vibration energy is now used to drive power module of active radial steering bogie, so as to implement the train’s active radial steering without external power supply. This paper discusses the evolution of radial steering bogie in general, and introduces the structure and basic principle of the parallel interconnection electro-hydraulic energy-harvesting active radial steering bogie system. The system establishes a model of the parallel interconnection hydraulic-electric energy-harvesting shock absorber. The typical vertical irregularity of American track is established. In the paper, we research on the system’s damping performance and energy recovery performance through stimulation. Simulation results show that the maximum vertical acceleration of train body is reduced from 42.9% to 62.3%, and the average energy recovery power from the system increases from 217W to 1835W when the system works at the six levels of track irregularities.


Author(s):  
Jia Mi ◽  
Lin Xu ◽  
Sijing Guo ◽  
Lingshuai Meng ◽  
Mohamed A. A. Abdelkareem

With the development of high-speed rail technology, the interaction between wheel and track becomes more serious, which threatens the running stability, riding quality and safety of the vehicle. Due to the selected stiffness and damping parameters, conventional passive suspensions cannot fit in with the diverse conditions of the railway. Additionally, among these vibrations contains a large amount of energy, if this vibrational energy can be recycled and used for the active suspension to control, it will be a good solution compared to the conventional passive suspensions. Many energy-harvesting shock absorbers have been proposed in recent years, the most popular design is the electromagnetic harvester including linear electromagnetic shock absorbers, rotational electromagnetic shock absorbers, the mechanical motion rectifier (MMR), and the hydraulic electromagnetic energy-regenerative shock absorber (HESA). With different energy converting mechanisms, the complicated effects of the inertia and nonlinear damping behaviors will severely impact the vehicle dynamic performance such as the ride comfort and road handling. In the past few years, engineers and researchers have done relevant researches on HESA which have shown that it has good effects and proposed several suspension energy regeneration solutions for applying to car. This paper presents a novel application of HESA into a bogie system for railway vehicles comparing to the conventional suspension systems. HESA is composed of hydraulic cylinder, check valves, accumulators, hydraulic motor, generator, pipelines and so on. In HESA, the high-pressure oil which is produced by shock absorber reciprocation could be exported to drive the hydraulic motor, so as to drive the generator to generate electricity. In this way, HESA regenerate the mechanical vibrational energy that is otherwise dissipated by the traditional shock absorber as heat energy. Because the bogie has two sets of suspension systems, a dynamic model of bogie based on AMESim is established in order to clarify the influence of the dynamic characteristics effect and the energy harvesting efficiency when installing the HESA into different sets of the bogie. Then, set the HESA model into each suspension system of the bogie and input with the corresponding characteristic excitation, the influence of the dynamic characteristics and the energy harvesting efficiency are analyzed and compared. The simulation results show that the system can effectively reduce the vibration of the carriage, while maintaining good potential to recycle vibratory energy. Based on the results of the simulation, the relationships as well as differences between the first suspension system and second suspension system have been concluded, which are useful for the design of HESA-Bogie. Moreover, comparing the energy harvesting efficiency discrepancy between the two suspension systems, the potential of energy harvesting of a novel railway vehicle bogie system with HESA has been evaluated and then the best application department has been found, which indicates the theoretical feasibilities of the HESA-bogie to improve the fuel economy.


Author(s):  
Zhongjie Li ◽  
Lei Zuo ◽  
Jian Kuang ◽  
George Luhrs

Energy-harvesting shock absorber is able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppress the vibration induced by road roughness. It can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called “mechanical motion rectifier (MMR)”, to convert the suspension’s oscillatory vibration into unidirectional rotation of the generator. An implementation of motion rectifier based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than the conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to verify the feasibility of the MMR shock absorber, in which more than 15 Watts’ electricity is harvested while driving at 15 mph. The motion rectifier based design can also be used for other applications of electromagnetic vibration energy harvesting.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6110
Author(s):  
Carlos Gijón-Rivera ◽  
José Luis Olazagoitia

In recent years, there has been a lot of work related to Energy Harvesting Shock Absorbers (EHSA). These devices harvest energy from the movement of the vehicle’s shock absorbers caused by road roughness, braking, acceleration and turning. There are different technologies that can be used in these systems, but it is not clear which would be the best option if you want to replace a conventional shock absorber with an EHSA. This article presents a methodology to compare the performance of different EHSA technologies that can replace a shock absorber with a given damping coefficient. The methodology allows to include different analysis options, including different types of driving cycles, computer vehicle models, input signals and road types. The article tests the methodology in selecting the optimal EHSA technology for a particular shock absorber and vehicle, optimizing at the same time energy recovery. In addition, a study of parameters in each type of technology is included to analyze its influence on the final objective. In the example analyzed, the EHSA technology with a rack and pinion system turned out to be the best. The proposed methodology can be extrapolated to other case studies and design objectives.


Author(s):  
Sagar Suryawanshi

Abstract: The conventional vehicle suspension dissipates the mechanical vibration energy in the form of heat which waste considerable energy. The regenerative suspensions have attracted much attention in recent years for the improvement of vibration attenuating performance as well as the reduction of energy dissipation. In fact, the vibrations in some situations can be very large, for example, the vibrations of tall buildings, long vehicle systems, railroads and ocean waves. With the global concern on energy and environmental issues, energy harvesting from large-scale vibrations is more attractive. This paper introduces the existing research and significance of regenerative shock absorbers and reviews the potential of automotive vibration energy recovery techniques; then, it classifies and summarizes the general classifications of regenerative shock absorbers. Keywords: Mechanical vibration, regenerative suspension, energy dissipation, railroads, ocean waves, vehicle.


2020 ◽  
pp. 78-82
Author(s):  
A.Р. Evdokimov ◽  
A.N. Gromyiko ◽  
A.A. Mironov

Analytical models of static and dynamic impact elastoplastic deformation of tubular energy-absorbing elements constituting a tubular plastic shock absorber are proposed. The developed models can be used for the calculation and design of these shock absorbers. Keywords static and dynamic elastoplastic deformation, mathematical modeling, tubular energy-absorbing element, tubular plastic shock absorber, impact loading. [email protected]


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4378
Author(s):  
Jorge A. Reyes-Avendaño ◽  
Ciro Moreno-Ramírez ◽  
Carlos Gijón-Rivera ◽  
Hugo G. Gonzalez-Hernandez ◽  
José Luis Olazagoitia

Energy harvesting shock absorbers (EHSA) have made great progress in recent years, although there are still no commercial solutions for this technology. This paper addresses the question of whether, and under what conditions, an EHSA can completely replace a conventional one. In this way, any conventional suspension could be replicated at will, while recovering part of the wasted energy. This paper focuses on mimicking the original passive damper behavior by continuously varying the electrical parameters of the regenerative damper. For this study, a typical ball-screw EHSA is chosen, and its equivalent suspension parameters are tried to be matched to the initial damper. The methodology proposes several electrical control circuits that optimize the dynamic behavior of the regenerative damper from the continuous variation of a load resistance. The results show that, given a target damper curve, the regenerative damper can adequately replicate it when there is a minimum velocity in the damper. However, when the damper velocity is close to zero, the only way to compensate for inertia is through the introduction of external energy to the system.


Sign in / Sign up

Export Citation Format

Share Document