Novel Trapezoidal-Loop Piezoelectric Energy Harvester

2014 ◽  
Vol 672-674 ◽  
pp. 402-406
Author(s):  
Bing Jiang ◽  
Shuai Yuan ◽  
Xiao Hui Xu ◽  
Mao Sheng Ding ◽  
Ye Yuan ◽  
...  

In recent years, piezoelectric energy harvester which can replace the traditional battery supply has become a hot topic in global research field of microelectronic devices. Characteristics of a trapezoidal-loop piezoelectric energy harvester (TLPEH) were analyzed through finite-element analysis. The output voltage density is 4.251V/cm2 when 0.1N force is applied to the free end of ten-arm energy harvester. Comparisons of the resonant frequencies and output voltages were made. The first order resonant frequency could reach 15Hz by increasing the number of arms. Meanwhile, the output voltage is improved greatly when excited at first-order resonant frequencies. The trapezoidal-loop structure of TLPEH could enhance frequency response, which means scavenging energy more efficiently in vibration environment. The TLPEH mentioned here might be useful for the future structure design of piezoelectric energy harvester with low resonance frequency.

2014 ◽  
Vol 635-637 ◽  
pp. 928-931
Author(s):  
Shuai Yuan ◽  
Bing Jiang ◽  
Li Juan Chen ◽  
Yu Guo Hao ◽  
Jian Bo Xin ◽  
...  

The ambient energy harvesting based on piezoelectric has become an important subject in recent research publications. A new rectangular-loop piezoelectric energy harvester(RLPEH) is proposed. The characteristic is analyzed by the finite element analysis (FEA) which includes the static analysis, modal analysis and harmonic response analysis. The analysis results show that the RLPEH could reduce the resonant frequency and improve the output voltage. The three order resonant frequency is 18.6Hz, 40.8Hz and 85.4Hz. The output voltage is 42V under 3m/s2 of acceleration and the effective bandwidth is 18.7Hz with output voltage above 10V.


2020 ◽  
Vol 12 (4) ◽  
pp. 506-512
Author(s):  
Ashok Batra ◽  
Almuatasim Alomari ◽  
James Sampson ◽  
Alak Bandyopadhyay ◽  
Mohan Aggarwal

Piezoelectric energy conversion has received considerable attention for vibration-to-electric energy conversion over the past decade. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure. This paper presents a comparison between unimorph and bimorph cantilever beam having a number of segmented PMN-PT piezo-elements on the input and output power. The numerical simulation was carried out by applying the finite element analysis (FEA) using COMSOL multi-physics software in order to predict output voltage and power over a frequency range of 60–200 Hz for the first resonant frequencies. The simulation results show maximum output voltage and power harvested of 7.38 V and 135.73 μW, respectively, by the unimorph piezoelectric energy harvester at resonant frequency value of 84 Hz with electromechanical coupling factor (ke) of 77.29%. These results highlight that the highest value of the output electrical power can be obtained when the piezoelectric element is attached on the top of a clamped end of a cantilever piezoelectric beam. Moreover, in an unimorph or bimorph cantilever beam system, increasing the number of piezoelectric elements results in a higher resonant frequency shift and significantly decreasing in the harvested power.


2018 ◽  
Vol 8 (11) ◽  
pp. 2091 ◽  
Author(s):  
Ramalingam Usharani ◽  
Gandhi Uma ◽  
Mangalanathan Umapathy ◽  
Seung-Bok Choi

In vibration-based piezoelectric energy harvesters, one of the major critical issues is increasing the bandwidth and output voltage simultaneously. This manuscript explores a new technique for broadening the operating frequency range and enhancing the output voltage of the piezoelectric material-based energy harvester by appropriate structural tailoring. The wide bandwidth and the improvement in harvested output are accomplished by means of a multi-stepped cantilever beam shaped with rectangular cavities. The harvester is mathematically modeled and analyzed for modal characteristics. It was demonstrated from the outcome that the first two consecutive mode frequencies could be brought closer and the output power was large at both the resonant frequencies compared to the regular cantilever beam energy harvester. The results obtained from experimentation were in agreement with analytical results.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 963
Author(s):  
Chaoqun Xu ◽  
Yuanbo Li ◽  
Tongqing Yang

Piezoelectric energy harvesting technology using the piezoelectric circular diaphragm (PCD) has drawn much attention because it has great application potential in replacing chemical batteries to power microelectronic devices. In this article, we have found a non-uniform strain distribution inside the PCD energy harvester. From the edge to the center of the ceramic disk, its output voltage first increases and then decreases. This uneven output voltage reduces the output power of the PCD energy harvester. Based on this phenomenon, we reduce the ceramic disk diameter and dig a hole in the center, analyzing the effect of removing the ceramic disk’s low output voltage part on the PCD energy harvester. The experimental results show that removing the ceramic disk’s low output voltage part can improve the output power, reduce the resonance frequency, and increase the optimal impedance of the PCD energy harvester. Under the conditions of 10 g proof mass, 9.8 m/s2 acceleration, the PCD energy harvester with a 19-mm diameter and a 6-mm hole can reach a maximum output power of 8.34 mW.


2014 ◽  
Vol 1033-1034 ◽  
pp. 1338-1342 ◽  
Author(s):  
Bing Jiang ◽  
Shuai Yuan ◽  
Jian Bo Xin ◽  
Li Juan Chen ◽  
Yu Guo Hao ◽  
...  

In recent years, new energy supply (energy self-sufficiency) technology which can replace the traditional battery supply has become a hot topic in global research field of microelectronic devices. A new low-frequency trapezoidal bow-shaped piezoelectric energy harvester (TBPEH) was proposed. The geometric model and finite element model (FEM) were built. The static analysis, modal analysis and harmonic response analysis of the TBPEH were discussed by using the Finite Element Analysis(FEA). Then traditional rectangular bow-shaped piezoelectric energy harvester(RBPEH) was compared with the new TBPEH. Simulation showed that the TBPEH could harvest energy more effectively than the RBPEH. The output voltage was increased by 135% with little change in resonant frequency, and indicator of the inhibition of side peak (SPI) which represented the capability of broad-band energy harvesting rose 11.2%. The TBPEH resonance frequency is 34.1Hz, which can be applied to the low frequency environment.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


2016 ◽  
Vol 23 (7) ◽  
pp. 2663-2674 ◽  
Author(s):  
Dauda Sh. Ibrahim ◽  
Asan G. A. Muthalif ◽  
N. H. Diyana Nordin ◽  
Tanveer Saleh

Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).


Sign in / Sign up

Export Citation Format

Share Document