Health Risk Analysis for Pb Exposure of Human from Indoor Dust in Shenyang

2014 ◽  
Vol 675-677 ◽  
pp. 191-193
Author(s):  
Dan Jin ◽  
Dong Mei Zheng ◽  
Li Na Sun

The aim of this work was to study Pb accumulation in indoor dust, and health risk of human due to dust exposure. Risk assessment of Pb to human health: Pb is most harmful to human body. The reasons of non-carcinogenic risk in residential area may be that indoor is not swept regularly, in addition, indoor decoration, building materials and other factors may also affect the content of Pb in dust. Non-carcinogenic risk in children is not only more than adults but also beyond the safety threshold. Indoor dust has been a threat to the health of children in Shenyang.

2020 ◽  
Author(s):  
Xu Li ◽  
Wenping Zhang ◽  
Jiapei Lv ◽  
Wenxiu Liu ◽  
Shanwei Sun ◽  
...  

Abstract Background: Phthalates were detected in various environments due to their widespread application. In this study, indoor dust samples from 94 buildings, including 72 residences and 22 dormitories, were collected in seven geographical regions in China and analyzed for eight phthalate esters (PAEs). Investigation of contamination profiles, geographical distribution, sources and risks of PAEs in indoor dusts was explored.Results: The highest Σ8PAEs concentration in residential buildings was found in Northeast China (median: 164.71 μg·g−1), which was 2.3 and 2.8 times higher than that in South China (median: 71.71 μg·g−1) and Southwest China (median: 58.53 μg·g−1), respectively. Di(2-ethylhexyl) phthalate (DEHP), di-iso-butyl phthalate (DIBP), and di-n-butyl phthalate (DBP) were the dominant compounds of Σ8PAEs in indoor dusts from residences and dormitories. The administrative levels revealed that the highly serious contamination occurred in the provincial capital, followed by non-provincial cities and countries. Such an occurrence was related to the usage of PAE products and the level of urbanization. Principal component analysis and positive matrix factorization showed that the emission from cosmetics and personal care products, plasticizers, and household building materials were the possible PAE sources in indoor dusts. Among three routes of ingestion, dermal adsorption, and inhalation, dust ingestion was the main route of human exposure to PAEs. The health risk of PAE exposure for different populations decreased in the order of children > women > men. The hazard indexes of non-cancer were higher than the threshold value of 10−6 during human exposure to DBP and DEHP. Children also faced potential non-cancer risk due to benzyl butyl phthalate (BBzP) and di-n-octyl phthalate (DnOP) exposure. The carcinogenic risks via exposure to BBzP and DEHP were low and negligible.Conclusion: Overall, PAEs were widely presented in indoor dusts. Obvious difference was observed in the distribution of PAEs concentration in indoor dusts due to the differences in economic development and usage of PAEs product. Plasticizers, household building materials, and cosmetics and personal care products were likely PAE sources in indoor dusts. The risk assessment suggested that carcinogenic risks of BBzP and DEHP were negligible, but DBP, DEHP, DnOP and BBzP may pose non-cancer risks to humans.


2021 ◽  
Author(s):  
Xu Li ◽  
Wenping Zhang ◽  
Jiapei Lv ◽  
Wenxiu Liu ◽  
Shanwei Sun ◽  
...  

Abstract Background: Phthalates were detected in various environments due to their widespread application. In this study, indoor dust samples from 94 buildings, including 72 residences and 22 dormitories, were collected in seven geographical regions in China and analyzed for eight phthalate esters (PAEs). Investigation of contamination profiles, geographical distribution, sources and risks of PAEs in indoor dusts was explored.Results: The highest Σ8PAEs concentration in residential buildings was found in Northeast China (median: 164.71 μg·g−1), which was 2.3 and 2.8 times higher than that in South China (median: 71.71 μg·g−1) and Southwest China (median: 58.53 μg·g−1), respectively. Di(2-ethylhexyl) phthalate (DEHP), di-iso-butyl phthalate (DIBP), and di-n-butyl phthalate (DBP) were the dominant compounds of Σ8PAEs in indoor dusts from residences and dormitories. The administrative levels revealed that the highly serious contamination occurred in the provincial capital, followed by non-provincial cities and countries. Such an occurrence was related to the usage of PAE products and the level of urbanization. Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) showed that the emission from cosmetics and personal care products, plasticizers, and household building materials were the possible PAE sources in indoor dusts. Among three routes of ingestion, dermal adsorption, and inhalation, dust ingestion was the main route of human exposure to PAEs. The health risk of PAE exposure for different populations in descending order of children > women > men. The hazard indexes of non-cancer were higher than the threshold value of 10−6 during human exposure to DBP and DEHP. Children also faced potential non-cancer risk due to benzyl butyl phthalate (BBzP) and di-n-octyl phthalate (DnOP) exposure. The carcinogenic risks via exposure to BBzP and DEHP were negligible.Conclusion: Overall, PAEs were widely presented in indoor dusts. Obvious difference was observed in the distribution of PAEs concentration in indoor dusts due to the differences in economic development and usage of PAEs product. Plasticizers, household building materials, and cosmetics and personal care products were likely PAE sources in indoor dusts. The risk assessment suggested that carcinogenic risks of BBzP and DEHP were negligible, but DBP, DEHP, DnOP and BBzP may pose non-cancer risks to humans.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Xu Li ◽  
Wenping Zhang ◽  
Jiapei Lv ◽  
Wenxiu Liu ◽  
Shanwei Sun ◽  
...  

Abstract Background Phthalates were detected in various environments due to their widespread application. In this study, indoor dust samples from 94 buildings, including 72 residences and 22 dormitories, were collected in seven geographical regions in China and analyzed for eight phthalate esters (PAEs). Investigation of contamination profiles, geographical distribution, sources, and risks of PAEs in indoor dusts was explored. Results The highest Σ8PAEs concentration in residential buildings was found in Northeast China (median: 164.71 μg·g−1), which was 2.3 and 2.8 times higher than that in South China (median: 71.71 μg·g−1) and Southwest China (median: 58.53 μg·g−1), respectively. Di (2-ethylhexyl) phthalate (DEHP), di-iso-butyl phthalate (DIBP), and di-n-butyl phthalate (DBP) were the dominant compounds of Σ8PAEs in indoor dusts from residences and dormitories. The administrative levels revealed that the highly serious contamination occurred in the provincial capital, followed by nonprovincial cities and countries. Such an occurrence was related to the usage of PAE products and the level of urbanization. Principal component analysis (PCA) and positive matrix factorization (PMF) showed that the emission from cosmetics and personal care products, plasticizers, and household building materials were the possible PAE sources in indoor dusts. Among three routes of ingestion, dermal adsorption, and inhalation, dust ingestion was the main route of human exposure to PAEs. The health risk of PAE exposure for different populations in descending order of children > women > men. The hazard indexes of noncancer were higher than the threshold value of 10−6 during human exposure to DBP and DEHP. Children also faced potential noncancer risk due to benzyl butyl phthalate (BBzP) and di-n-octyl phthalate (DnOP) exposure. The carcinogenic risks via exposure to BBzP and DEHP were negligible. Conclusion Overall, PAEs were widely presented in indoor dusts. Obvious difference was observed in the distribution of PAEs concentration in indoor dusts due to the differences in economic development and usage of PAEs product. Plasticizers, household building materials, and cosmetics and personal care products were likely PAE sources in indoor dusts. The risk assessment suggested that carcinogenic risks of BBzP and DEHP were negligible, but DBP, DEHP, DnOP, and BBzP may pose noncancer risks to humans.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Daniel Omeodisemi Omokpariola ◽  
Patrick Leonard Omokpariola

Abstract Rainwater has being getting popularity in use due to lack of portable water sources in Nigeria. The study seeks to evaluate the health and exposure risk assessment of heavy metals from the usage of rainwater from inhabitants of four oil producing area of Rivers State, Nigeria. A total of 32 rainwater samples were collected from different sampling surfaces (ambient, zinc, aluminium, asbestos and stone-coated) to analyse for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), lead (Pb) and zinc (Zn) using inductively coupled plasma – optical emission spectrophotometer. Analysed concentration (mg/L) showed varying results across different sampling surfaces converted to average concentration (mg/kg) was below WHO/FAO recommended guideline with no issue associated. Health and Exposure risk assessment were performed on analysed results from rainwater samples as non-carcinogenic risk assessment showed that HI value is less than 1.0 indicating no risk to population who consumes rainwater across different roofing surfaces in Rivers state. Carcinogenic risk assessment showed that chromium-VI were found to be the highest contributor to cancer risk across all sampling surfaces. Special treatment and regulations should be taken into consideration especially on stone-coated roof before administering to children, as they are prone to health issues due to developing immunity compared to adults.


Toxics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 65
Author(s):  
Bazoin Sylvain Raoul Bazié ◽  
Caroline Douny ◽  
Thomas Judicaël Ouilly ◽  
Djidjoho Joseph Hounhouigan ◽  
Aly Savadogo ◽  
...  

Charcoal- or wood-cooked chicken is a street-vended food in Burkina Faso. In this study, 15 samples of flamed chicken and 13 samples of braised chicken were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) with a high-performance liquid chromatography-fluorescence detector. A face-to-face survey was conducted to assess the consumption profiles of 300 men and 300 women. The health risk was assessed based on the margin of exposure (MOE) principle. BaP (14.95–1.75 μg/kg) and 4PAHs (BaP + Chr + BaA + BbF) (78.46–15.14 μg/kg) were eight and five times more abundant at the median level in flamed chickens than in braised ones, respectively. The contents of BaP and 4PAHs in all flamed chicken samples were above the limits set by the European Commission against 23% for both in braised chickens. Women had the highest maximum daily consumption of both braised (39.65 g/day) and flamed chickens (105.06 g/day). At the estimated maximum level of consumption, women were respectively 3.64 (flamed chicken) and 1.62 (braised chicken) times more exposed to BaP and 4PAHs than men. MOE values ranged between 8140 and 9591 for men and between 2232 and 2629 for women at the maximum level of consumption of flamed chickens, indicating a slight potential carcinogenic risk.


Author(s):  
Georges-Ivo Ekosse ◽  
George Elambo Nkeng ◽  
Nenita Bukalo ◽  
Olaonipekun Oyebanjo

This study assessed the mineralogical and geochemical characteristics of geophagic clays sold in some markets in Cameroon to ascertain their provenance, contamination status and human health risk. To achieve this, 40 samples from 13 markets in Cameroon were purchased and analysed using X-ray diffractometry, X-ray fluorescence and laser ablation inductively coupled plasma mass spectrometry for their mineralogy and geochemistry, respectively. The geophagic clays were dominantly made up of kaolinite and quartz. Their chemistry was dominated by SiO2, Al2O3 and LOI with means of 48.76 wt%, 32.12 wt% and 13.93 wt%, respectively. The major, trace and rare earth elements data showed that these geophagic clays were predominantly derived from felsic rocks. The contamination assessment indicated no enrichment of metals from anthropogenic sources, except for Zn in samples from Acacia, Madagascar and Mfoudi markets. The index of geo-accumulation indicated no contamination to moderate contamination of the clays. The non-carcinogenic index values for Fe, Co, Cr, Cu, Ni, Pb and Zn were generally less than 1, suggesting no non-carcinogenic risk exposure to children and adults consuming the geophagic clays from these metals. The carcinogenic risk index (TCR) for Ni and Cr were above 10−6, which implies that children and adults are vulnerable to minimal carcinogenic health risk. The TCR values from Ni posed the highest risk, especially to children consuming clays from some markets.


Sign in / Sign up

Export Citation Format

Share Document