Research of Brushless Doubly-Fed Generator for Grid-Connection and Power Control

2014 ◽  
Vol 678 ◽  
pp. 417-422
Author(s):  
Yu Liu ◽  
Zhong Chao Wei ◽  
Xin Mai Gao ◽  
Xi Chen ◽  
Xue Fan Wang ◽  
...  

To reliably realize the grid-connection generating of brushless doubly-fed machine (BDFM), this paper firstly focuses on some essential issues, such as amplitude, frequency and phase of power winding voltage; the control of active and reactive power. Deducing the control method of power winding voltage amplitude, frequency and phase based on basic electrical machine principle. Referring synchronous machine theory, the modulation principle of active and reactive power for BDFM is obtained. Then, the connection progress to grid is researched by setting up the control platform based on DSP. The experimental results show that the amplitude, frequency and phase of power winding voltage are effectively controlled and the active and reactive power could be regulated when adopting the decoupled voltage control strategy. This control method provides a practical realization manner in the application of wind power generation and so on.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6402
Author(s):  
Jianning Shi ◽  
Chaoying Xia

This paper establishes the state-space model of the cup rotor permanent-magnet doubly fed machine in the synchronous reference frame. The feedback-linearization control method is used to realize the decoupling control of flux and torque. Then, the upper and lower load torque boundaries are solved. Furthermore, to minimize the stator current magnitude of the control machine under a certain torque, the maximum torque per ampere (MTPA) control is derived. Finally, simulation results demonstrate the good decoupling performance of the feedback-linearization control method and the correctness of the load torque boundaries. In addition, the effectiveness and robustness of the proposed control methods are also demonstrated.


2021 ◽  
Vol 233 ◽  
pp. 01025
Author(s):  
Yingfeng Zhu ◽  
Xiaosu Xie ◽  
Dong Yang ◽  
Song Gao ◽  
Weichao Zhang ◽  
...  

Doubly fed induction generator (DFIG) wind power generation system is widely used in wind farm all over the world. Reactive power can be generated both in grid-side converter and generator-side converter of DFIG. In this paper, working principle and control method of DFIG are introduced, and the reactive power limit of DFIG is derived, finally reactive power regulation is simulated in Simulink.


2017 ◽  
pp. 1695-1718
Author(s):  
Samir Abdelmalek ◽  
Hocine Belmili

Attention has been paid by many researchers to address the various challenges of grid connection of DFIG-based Wind Energy Conversion Systems (WECS). This chapter focuses on the design of a robust H8 controller for the power flow between the stator of the Doubly-Fed Induction Generator (DFIG) and the grid. The robust H8 controller design is formulated as a mixed-sensitivity problem. A mathematical model of the DFIG written in an appropriate d-q reference frame is established to carry out simulations. The proposed power control scheme is elaborated and compared with a conventional Proportional-Integral (PI) controller based on vector control technique. The results show interesting performance of the controlled system in terms of the power reference tracking (the active and reactive power) and robustness against parameter variations compared with the conventional PI controller.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Ali Darvish Falehi

Abstract The doubly fed induction generator (DFIG)-based wind turbine as a nonlinear, compound, and multivariable time-varying system encompasses several uncertainties especially unfamiliar disturbances and unmodeled dynamics. The design of a high-performance and reliable controller for this system is regarded as a complex task. In this paper, an effective and roust fractional-order sliding mode controller (FOSMC) has been designed to accurately regulate the active and reactive power of DFIG. FOSMC has overcome the system uncertainties and abated the chattering amplitude. Since tuning the FOSMC is a challenging assignment, the application of a multi-objective optimization algorithm can efficiently and precisely solve the design problem. In this regard, non-dominated sorting multi-objective gray wolf optimizer (MOGWO) is taken into account to optimally adjust the FOSMC. In a word, the simulation results have definitively validated robustness of MOGWO-based FOSMC in order to accurately track DFIG's active and reactive power.


Sign in / Sign up

Export Citation Format

Share Document