Properties of Special Mortar Made with Raw Waste Material

2014 ◽  
Vol 680 ◽  
pp. 135-139
Author(s):  
Mohd Syahrul Hisyam Mohd Sani ◽  
Fadhluhartini Muftah ◽  
Muhammad Isha Ismail ◽  
Marzuki Ab. Rahman

The paper deals with the properties of a special mortar using a Waste Paper Sludge Ash (WPSA) from Waste Paper Recycling Industry and Bottom Ash (BA) from Coal Electric Power Stations. Special mortar with some advantages is proposed to give a significant impact for replacing of normal cement mortar. The advantages are approached due to the problem that occurred from collecting raw material such as pollution problems and environmental impact issues. Besides, the raw material sources of cement and sand is limited and this issue engages with the ideas to produce new material in mortar and masonry engineering. A total 72 cubes mortar is cast and determined their properties of chemical and mechanical. The properties of special mortar are compared with other special mortar made of other waste material. The compression strength of special mortar is conducted at the age 3, 7, 28 and 40 days of curing. From the result of chemical properties, it showed that the special mortar created the high compression strength value for all mixes. The compression strength of special mortar is increased by increasing the percentage sand replacement by BA. But, the compression strength is decreased when WPSA is increased. Finally, the special mortar with 100 % BA and 10 % WPSA showed the appropriate proportion for producing special mortar.

2015 ◽  
Vol 660 ◽  
pp. 3-8
Author(s):  
Laila Mardiah Deraman ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Liew Yun Ming ◽  
Kamarudin Hussin ◽  
Zarina Yahya

Geopolymerization are chemical reaction between raw material and alkaline activator where a rapid change of some partial armorphous, specific structure into a compact cemented framework. It was treated with an alkali silicate solution at 45 – 80 °C whereas it’s formed from reaction of mineral clays or aluminosilicate-bearing industrial waste. The previous study about geopolymer has been done for many years due to the physical and chemical properties which is suitable to use in the construction industry. A Geopolymer material that was containing most Silica (Si) and Aluminium (Al) is such as fly ash, bottom ash, metakaolin and ground granulate blast slag (GGBS). Bottom ash is produced from coal fired thermal power plant and has a physical characteristic similar as sand or gravel sand that makes it ideal for industrial application like a green concrete. The different performance of geopolymer is according to the different content of silica, alumina and calcium. To obtain the best geopolymer material, parameter of raw materials content, the types and ratio of alkaline activators also the curing method will affect the high result of compressive strength. This paper will summarize a previous researchers work about the alkali-activated binder in geopolymer raw materials to become green product.


2018 ◽  
Vol 68 (12) ◽  
pp. 2771-2775
Author(s):  
Mihaela Gabriela Dumitru ◽  
Delia Nica Badea ◽  
Dragos Tutunea

Across the world the fossil fuels are depleting and countries are forced to find an alternative source to reduce green house gases and replace petroleum fuels. Depending of the raw material sources, vegetable oils, animal fats or algae, biodiesel offers a solution for a clean-burning diesel fuel. Watermelon (Citrullus lanatus L.) seed were collected and the oil was extracted. The oil was transformed into fatty acid methyl esters through a transesterification process and blended in various proportions with diesel fuel. The physico-chemical properties of fuels were determined. Results obtained showed that the biodiesel has a density (0.870 g/cm3), kinematic viscosity 40�C (3.1 mm2/s), flash point (128�C), saponification index (150 mgKOH/g), iodine index (108 mgI2/100g), peroxide index (3.7 mEqO2/Kg) and oxidation stability (6 hours) in the range of UE specifications. The engine tests were conducted on a Deutz F4L912 diesel engine, 51 kW, 4-stroke, air cooled, direct injection diesel engine. From the test performed was observed that the CO and HC emissions were reduced due to high content of oxygen in biodiesel blends.


2012 ◽  
Vol 626 ◽  
pp. 776-780
Author(s):  
Ahmad Ruslan Mohd Ridzuan ◽  
A.A. Khairulniza ◽  
M.A. Fadhil

ncreasing environmental concerns of the cement industry brings about the requirement to the development of new binders. Polymeric concrete containing no cement provides great potential in reducing the global warming problems caused by CO2emissions in Portland cement production. On the other hand, large amount of waste paper sludge ash produced annually in Malaysia has caused a disposal problem as they require a proper dumping process whereby it is very costly. The study focuses on the utilization of this high calcium Waste paper sludge ash (WPSA) in polymeric concrete containing recycled concrete aggregate (RCA). WPSA is chemically activated by a high-alkaline solution to form paste that binds aggregate in the mixture. Sodium hydroxide and sodium silicate solution are used as alkali activators of silica (Si) and aluminium (Al) in main binders. The polymeric concrete samples were exposed to external ambient condition and tested for compressive strength and shrinkage at 3, 7, 28, 56, and 90 days to identify the strength and deformation of the polymeric concrete. X-Ray Fluorescence (XRF) analysis performed to ascertain the chemical properties of the produced WPSA. The result of polymeric concrete yielded very minimum shrinkage. The measurement compressive strength is up to 7MPa at 90 days. Hence, this new green material will bring benefits to the environment and is of economical value.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 894 ◽  
Author(s):  
Pavol Steltenpohl ◽  
Jakub Husár ◽  
Patrik Šuhaj ◽  
Juma Haydary

Municipal solid waste constitutes one of the major challenges and concerns of our society. Disposal of waste material is potentially dangerous, harming both environment and mankind. In order to diminish negative effects of municipal solid waste, its thermal decomposition to valuable chemicals has been studied. The principal draw-back of thermal processes used for solid waste utilization as raw material is tar formation. In this study, low-cost catalysts of different origin were tested in the decomposition of a model component of tar originating from waste material pyrolysis/gasification. p-Xylene was selected as the model compound found in biomass decomposition products. Its decomposition was carried out in the presence of either tire pyrolysis char- or clay minerals-based catalysts. Tar-cracking activities of both catalyst types at varying experimental conditions were compared and related to the catalysts physical-chemical properties. In experiments, either empty reactor or reactor filled with 10 g of the catalyst was used; p-xylene mass flow was set to 2.58 g h−1 (50 μL min−1, room temperature), and decomposition temperature ranging from 750 °C to 850 °C was applied. Moreover, evolution of the output variables, p-xylene conversion and hydrogen content in the gas phase, with the reaction time was investigated. Catalysts’ properties were assessed based on nitrogen adsorption isotherms, thermogravimetric and elemental composition analyses. Amounts and composition of p-xylene catalytic decomposition products were evaluated using GC analysis of both gaseous phase and condensable products. Results showed the superiority of tire pyrolysis char catalyst over that based on clay minerals.


2018 ◽  
Vol 46 ◽  
pp. 00019
Author(s):  
Małgorzata Śliwka ◽  
Waldemar Kępys ◽  
Małgorzata Pawul

The use of waste in land reclamation projects or road works is a generally applied method of waste recycling since coal bottom ash can be used in plant substrate. This paper presents the results of research on the physical and chemical properties and the toxicity of waste originating from power stations, in the form of coal bottom ash collected from pulverisedfuel and fluidised-bed boilers. To evaluate the eco-toxicological properties of waste, a series of plant growing tests were conducted, with the use of selected plant species, as well as germination tests in water extracts of waste. The latter were intended to determine whether coal bottom ash displayed cytostatic activity, while, in the case of pot experiments, the purpose was to determine the germination rates and growths of both above-ground and underground parts of plants. The test results indicated that the influence of the tested coal bottom ash on the plant development and growth depended on physical and chemical properties of that waste. The reactions of plants were also changing depending on the proportion of waste in soil.


2014 ◽  
Vol 798-799 ◽  
pp. 599-604
Author(s):  
Nancy E. Quaranta ◽  
Marta G. Caligaris ◽  
Miguel A. Unsen ◽  
Hugo A. López ◽  
Gisela G. Pelozo

The objective of this work is to analyze ashes from a thermal power plant with the aim of determining its environmental aptitude for reutilization as aggregates in clay mixtures for ceramics production. To achieve this objective the waste material was characterized by different techniques: optical microscopy, scanning electronic microscopy, conductivity, pH, among others. Clay samples with bottom ash addition, up to 50%, were prepared. These samples were thermally treated at 950oC and then characterized with diverse techniques in order to determine their behaviour in service. The obtained results show the high feasibility of reutilization of the studied waste as raw material in the production of ceramic products.


2013 ◽  
Vol 701 ◽  
pp. 275-279 ◽  
Author(s):  
A.R.M. Ridzuan ◽  
A.A. Khairulniza ◽  
M.A. Fadzil ◽  
J. Nurliza

Waste paper sludge ash (WPSA) is a byproduct and problematic waste of paper industries. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. This paper present on the morphology and physical analysis studies on polymerization of WPSA mortar. Two (2) types of polymeric mortar mixes containing WPSA with alkaline activators and without alkaline activators were prepared. The morphology of each mixes was determined using Spectra Electron Microscope (SEM) and the physical test is focus on compressive strength. However, the element diffraction of each mixes using Energy Dispersive X-Ray Spectroscopy (EDX) was also carried out as a method to identify the polymerization of polymeric mortar. From the result obtained it is found that the utilization of WPSA reduced the polymerization of polymeric mortar due to more pores. From the EDX analysis it is also revealed that the WPSA polymeric mortar also contained less synthetic aluminous silicate compound. However, the strength gain up to 6MPa and it is comparable with other high calcium material mortar.


Food Biology ◽  
1970 ◽  
pp. 19-23
Author(s):  
Nawal Abdel-Gayoum Abdel-Rahman

The aim of this study is to use of karkede (Hibiscus sabdariffa L.) byproduct as raw material to make ketchup instead of tomato. Ketchup is making of various pulps, but the best type made from tomatoes. Roselle having adequate amounts of macro and micro elements, and it is rich in source of anthocyanine. The ketchup made from pulped of waste of soaked karkede, and homogenized with starch, salt, sugar, ginger (Zingiber officinale), kusbara (Coriandrum sativum) and gum Arabic. Then processed and filled in glass bottles and stored at two different temperatures, ambient and refrigeration. The total solids, total soluble solids, pH, ash, total titratable acidity and vitamin C of ketchup were determined. As well as, total sugars, reducing sugars, colour density, and sodium chloride percentage were evaluated. The sensory quality of developed product was determined immediately and after processing, which included colour, taste, odour, consistency and overall acceptability. The suitability during storage included microbial growth, physico-chemical properties and sensory quality. The karkede ketchup was found free of contaminants throughout storage period at both storage temperatures. Physico-chemical properties were found to be significantly differences at p?0.05 level during storage. There were no differences between karkade ketchup and market tomato ketchup concerning odour, taste, odour, consistency and overall acceptability. These results are encouraging for use of roselle cycle as a raw material to make acceptable karkade ketchup.


2008 ◽  
Vol 59 (2) ◽  
pp. 129-134
Author(s):  
Ion Teoreanu ◽  
Roxana Lucia Dumitrache ◽  
Stefania Stoleriu

Any change of the raw material sources for glazes, economically, ecologically motivated, and also from the glaze quality point of view, is conditioned by the molecular formula rationalization and by the variation limits of the molecular formula, respectively. The proper glaze compositions are placed within their limit variation intervals with optimized processing and utilization properties. For this purpose, the rationalization criteria and procedures of molecular formulas are summarized in the present paper, as well as the results referring to their rationalization obtained in the authors� previous work. Thus, one starts from a base of raw materials that are selected, usable and also accessible for the design and producing of the glazes. On these bases the groundwork and the design equation for the glaze recipes are developed, exemplified for a single glaze. For an easy access to results, computer programs are used for an easy access to results.


Sign in / Sign up

Export Citation Format

Share Document