A Review on Processing and Properties of Bottom Ash Based Geopolymer Materials

2015 ◽  
Vol 660 ◽  
pp. 3-8
Author(s):  
Laila Mardiah Deraman ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Liew Yun Ming ◽  
Kamarudin Hussin ◽  
Zarina Yahya

Geopolymerization are chemical reaction between raw material and alkaline activator where a rapid change of some partial armorphous, specific structure into a compact cemented framework. It was treated with an alkali silicate solution at 45 – 80 °C whereas it’s formed from reaction of mineral clays or aluminosilicate-bearing industrial waste. The previous study about geopolymer has been done for many years due to the physical and chemical properties which is suitable to use in the construction industry. A Geopolymer material that was containing most Silica (Si) and Aluminium (Al) is such as fly ash, bottom ash, metakaolin and ground granulate blast slag (GGBS). Bottom ash is produced from coal fired thermal power plant and has a physical characteristic similar as sand or gravel sand that makes it ideal for industrial application like a green concrete. The different performance of geopolymer is according to the different content of silica, alumina and calcium. To obtain the best geopolymer material, parameter of raw materials content, the types and ratio of alkaline activators also the curing method will affect the high result of compressive strength. This paper will summarize a previous researchers work about the alkali-activated binder in geopolymer raw materials to become green product.

Author(s):  
Siraj Salman Mohammad ◽  
Renata Oliveira Santos ◽  
Maria Ivone Barbosa ◽  
José Lucena Barbosa Junior

: Anthocyanins are widely spread in different kinds of food, especially fruits and floral tissues, there is an extensive range of anthocyanin compounds reach more than 600 exist in nature. Anthocyanins can be used as antioxidants and raw material for several applications in food and pharmaceutical industry. Consequently, a plenty of studies about anthocyanins sources and extraction methods were reported. Furthermore, many studies about their stability, bioactive and therapeutic properties have been done. According to the body of work, we firstly worked to shed light on anthocyanin properties including chemical, antioxidant and extraction properties. Secondly, we reported the applications and health benefits of anthocyanin including the applications in food processes and anthocyanin characteristics as therapeutic and prophylactic compounds. We reviewed anticancer, anti-diabetic, anti-fatness, oxidative Stress and lipid decreasing and vasoprotective effects of anthocyanins. In conclusion, because the importance of phytochemicals and bioactive compounds the research is still continuing to find new anthocyanins from natural sources and invest them as raw materials in the pharmaceutical and nutrition applications.


2021 ◽  
Vol 11 (8) ◽  
pp. 3334
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Energy consumption, because of population development, is progressively increasing. For this reason, new sources of energy are being developed, such as that produced from the combustion of biomass. However, this type of renewable energy has one main disadvantage, the production of waste. Biomass bottom ash is a residue of this industry that currently has not much use. For this reason, this research evaluates its use as a filler in bituminous mixtures, since this sector also has a significant impact on the environment, as it requires large quantities of raw materials. With this objective, first, the physical and chemical properties of biomass bottom ashes were evaluated, verifying their characteristics for their use as filler. Subsequently, bituminous mixtures were conformed with biomass bottom ash as filler, and their physical and mechanical properties were analyzed through particle loss and Marshall tests. The results of these tests were compared with those obtained with the same type of mixture but with conventional and ophite aggregates. This study confirmed that biomass bottom ash was viable for use as a filler, creating mixtures with a higher percentage of bitumen, better mechanical behavior, and similar physical properties. In short, more sustainable material for roads was obtained with waste currently condemned to landfill.


2013 ◽  
Vol 594-595 ◽  
pp. 527-531
Author(s):  
Mohamad Ezad Hafez Mohd Pahroraji ◽  
Hamidah Mohd Saman ◽  
Mohamad Nidzam Rahmat ◽  
Kartini Kamaruddin ◽  
Ahmad Faiz Abdul Rashid

Millions tons of coal ash which constitute of fly ash and bottom ash were produced annually throughout the world. They were significant to be developed as masonry brick to substitute the existing widely used traditional material such as clay and sand brick which were produced from depleting and dwindling natural resources. In the present study, the coal ash from coal-fired thermal power plant was used as the main raw material for the fabrication of cementless unfired lightweight brick. The binder comprising of Hydrated Lime (HL)-activated Ground Granulated Blastfurnace Slag (GGBS) system at binding ratio 30:70, 50:50 and 70:30 were used to stabilize the coal ash in the fabrication process of the brick. Foam was used to lightweight the brick. The compressive strength and ambient density were evaluated on the brick. The results indicated that the brick incorporating HL-GGBS system achieved higher strength of 20.84N/mm2 at 28 days compare to the HL system with strength of 13.98N/mm2 at 28 days. However, as the quantity of foam increase at 0%, 25%, 50%, 75% and 100%, the strength and density for the brick decreased.


2021 ◽  
Vol 72 ◽  
pp. 215-222
Author(s):  
Mohanad R.A. Al-Owaidi ◽  
◽  
Mohammed L. Hussein ◽  
Ruaa Issa Muslim ◽  
◽  
...  

The Portland cement industry is one of the strategic industries in any country. The basis of an industry success is the availability of raw materials and, the low extraction in addition to transportation costs. The Bahr Al-Najaf region is abundant with limestone rocks but lacks primary gypsum. An investigation had been carried out to identify the source of secondary gypsum as an alternative to primary gypsum. Twelve boreholes were drilled for a depth of 2 m, as the thickness of suitable secondary gypsum layer ranges from 1 to 1.5 m. The mineralogical study revealed the predominance of gypsum followed by quartz and calcite, with an average of 62.9%, 19.6% and 14.35%, respectively. The geochemical analysis revealed that the content of SO3 is appropriate and ranging from 41.92% to 32.89% with an average of 37.73%. The SO3 content is within an acceptable range. The mean abundance of the major oxides of the study area may be arranged as SO3 > CaO> SiO2> MgO> Al2O> Fe2O3. The insoluble residue was at an acceptable rate. The laboratory experiments for milling secondary gypsum with clinker has successfully proven the production of Portland cement that matches the limits of the Iraqi Quality Standard (IQS) No. 5 of 1984. Great care must be taken when using secondary gypsum; secondary gypsum must be mixed well to maintain the chemical properties before blending with clinker and utilizing in the cement mill in the cement plant.


2020 ◽  
Vol 142 ◽  
pp. 02003 ◽  
Author(s):  
Retno Utami Hatmi ◽  
Erni Apriyati ◽  
Nurdeana Cahyaningrum

Edible coating is one form of packaging technology with environmentally friendly theme. The raw materials of edible coating derived from nature, while the waste is decomposed or even zero waste. The research of edible coating using experimental design RAL (completely randomized design) with two factors, namely the type of raw material used tuber starch (cassava, arrowroot and canna) and the percentage of starch (3%, 4% and 5%) (b/v) with three replications time. The quality analisys of edible coating includes the physical properties (thickness (mm), tensile strength (N) and elongation (mm)) and chemical properties (moisture content (%), solubility (%), the water vapor transmissin rate (g/hour) and peroxide (mek/kg). The research showed that the edible coating with sorbitol plasticizer of arrowroot starch 4% provide best physicochemical properties (thickness 0,09mm; 1,63N tensile strength; elongation 84,38mm; water content of 11.19%; solubility of 31.40%; the transfer of water vapor 0,16g / h and 3,20mek/ kg).


2020 ◽  
Author(s):  
Katarina Šter ◽  
Sabina Kramar

<p>Al-rich mineral resources are one of the essential components for the production of the novel sustainable mineral binders. Belite-sulfoaluminate (BCSA) cements, which are considered as low-carbon and low-energy, allows the substitution of natural raw materials with secondary ones. In East-Southeast European countries (ESEE) there are huge amounts of various industrial and mine residues that are either landfilled or currently have a low recycling rate. These residues are generated from mining activities (mine waste) and as a by product of different types of industry, such as thermal power plants, steel plants or the aluminium industry (slags, ashes, red mud, etc.). Within the framework of the RIS-ALiCE project, in cooperation with 15 project partners from Slovenia, Austria, France, Hungary, Serbia, Bosnia and Herzegovina and Macedonia, a network of relevant stakeholders has been established in the field of currently unused aluminium-containing mine and industrial residues. Inside the created network mine and industrial residues have been mapped and valorised in order to evaluate their suitability for the use in innovative and sustainable low CO<sub>2</sub>-mineral binder production. Aluminium-containing residues are characterized with respect to their chemical, physical and radiological composition using different analytical methods such as X ray fluorescence spectroscopy, ICP optical emission spectrophotometry, gravimetry, X ray powder diffraction, gamma spectroscopy, etc. The long-term activity of network between wastes holders/producers and mineral end users will be enabled via developed Al-rich residues registry, including a study of the potential technological, economic and environmental impacts of applying the innovative methodology of the sustainable secondary raw materials management in ESEE region. Developed registry with the data valuable for both, waste providers as waste users in ESEE region, can be later-on upscaled also to other regions of Europe. It will provide the data on the available and appropriate Al-rich secondary resources, which will enablethe production of innovative low-CO<sub>2 </sub>cements.</p><p><strong>Keywords:</strong> secondary raw material, alternative binders, Al-rich residues, networking, mapping, valorisation, registry.</p>


2010 ◽  
Vol 8 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Maciej Jabłoński

AbstractEnriched titanium raw materials with high titanium content called titanium slags are received by the electrothermal reduction of ilmenite. Titanium slags are most frequently used in the titanium dioxide industry. The reaction of titanium slags with sulphuric acid is strongly exothermic and creates danger of thermal explosion. Kinetics of this reaction depends on the parameters such as temperature of initiation, sulphuric acid concentration and dimension of particles of titanium slag. The reaction of titanium slag with sulphuric acid was investigated at non-isothermal conditions in a special construction calorimeter. The observed thermal power changes in the calorimeter (“calorimeter run”), are the basis for estimation of reaction kinetics. A proposed model describing the thermal power changes and taking into account the moment of initiation of reaction is presented. The calorimetric investigations showed, that reaction rate of titanium slags with sulphuric acid depends on initial temperature of reaction, size of particles of titanium raw material and sulphuric acid concentration.


2012 ◽  
Vol 724 ◽  
pp. 103-106
Author(s):  
Yoo Taek Kim ◽  
Chang Sub Jang ◽  
Yun Jae Choi

This study was conducted to evaluate the feasibility of using bottom ash after magnetic separation and dredged soil from the coal power plants as raw materials for artificial lightweight aggregate (ALA). The dependence of composition and sintering temperature on physical properties of ALA was investigated. Fe compounds play an important role in the bloating reaction, thus specimens containing more ferrous materials such as Fe3O4 are more easily bloated. Both black core region and bloating phenomenon were increased with an increase in the contents of dredged soil. Specimens made use of MBA(Magnetic separated bottom ash which has magnetic components) showed lower bulk density than those of NMBA(non-magnetic separated bottom ash which has much less ferrous materials. It was confirmed that MBA could be used as an effective raw material for making ALA having low density because the ferrous components in it act as bloating agents.


2014 ◽  
Vol 804 ◽  
pp. 15-18
Author(s):  
Yeong Geum Son ◽  
Woo Keun Lee

In this work, pastes were prepared from slag and MSWI bottom ash by geopolymer technique. And its physical property was evaluated with mixing ratio of sodium silicate and potassium silicate. The amounts of leaching products, such as silica, alumina and calcium ions were changed for mixing ratio of raw materials. The compressive strength was increased with the increment of leaching amount of silica, alumina and calcium ions.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 297
Author(s):  
Svetlana N. Butova ◽  
Vera A. Salnikova ◽  
Lyudmila A. Ivanova ◽  
Irina D. Schegoleva ◽  
Lyudmila A. Churmasova

The article presents the results of author scientific research dealing with the use of saponins, biologically active substances in food and cosmetics technology. The problems of their formation in plants, the chemical nature and the features are considered, biological and physico-chemical properties of saponins are studied. By their nature, saponins are divided into steroid and triterpene, differing by glycoside part of a molecule, thus, with different biological and chemical properties, but they are all capable to develop foam in aqueous solutions, and this feature is the origin of their name. The name originated from the word «Sapo», which means soap. It should be noted that at present saponins are not studied fully as other biologically active substances (BAS), although they are of interest and relevance. In the course of scientific work, about 20 species of saponin-containing plant material, both steroid and triterpene ones, were selected and analyzed for the determination of saponins. The selection of raw materials with the highest content was performed for their further use in cosmetics and as the surfactants in the production of emulsion food products. The following research methods were used in the work: qualitative reactions to the presence of saponins, foaming, saponin extraction, the release from dry aqueous extract of both steroid and triterpin ones. The method and the scheme of their release and precipitation are presented in the article.The work was carried out within the framework of the state assignment of FSBEI HE «Moscow State University of Food Production» No. 14.7404.2017/бч «Scientific and applied bases of application of traditional and nonconventional vegetable raw materials and secondary products of its processing (fruit and berry, grain, bean, oil, essential oil, herbs) in technology of specialized products of the food industry, cosmetology and pharmacy»  


Sign in / Sign up

Export Citation Format

Share Document