Fall Detection by Wearable Device Using Support Vector Machine

2014 ◽  
Vol 687-691 ◽  
pp. 1003-1006
Author(s):  
Xian Wei Wang ◽  
Fu Cheng Cao

In this study, using simulated falls and activities of daily living (ADL) performed by elderly subjects, the ability to discriminate between falls and ADL was investigated with wearable tri-axial accelerometer sensors, mounted on the chest. The movement data of human body analysis was performed using one-class support vector machine (SVM) to determine the feature of motion types. Experiments to detect falls are performed in four directions: forward, backward, left, and right. The preliminary results show that this method can detect the falls effectively, reduces both false positives and false negatives, while improving fall detection accuracy, and the application can offer a new guarantee for the elderly health.

2018 ◽  
Vol 29 (9) ◽  
pp. 2027-2039 ◽  
Author(s):  
Zhangjie Chen ◽  
Ya Wang

This article presents an infrared–ultrasonic sensor fusion approach for support vector machine–based fall detection, often required by elderly healthcare. Its detection algorithms and performance evaluation are detailed. The location, size, and temperature profile of the user can be estimated based on a novel sensory fusion algorithm. Different feature sets of the support vector machine–based machine learning algorithm are analyzed and their impact on fall detection accuracy is evaluated and compared empirically. Experiments study three non-fall activities, standing, sitting, and stooping, and two fall actions, forward falling and sideway falling, to simulate daily activities of the elderly. Fall detection accuracy studies are performed based on discretely and continuously (closer to reality) recorded experimental data, respectively. For the discrete data recording, an average accuracy of 92.2% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to 96.7% when sensor fusion is used. For the continuous data recording (180 training sets, 60 test sets at each distance), an average accuracy less than 70.0% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to around 90.3% after sensor fusion. New features will be explored in the next step to further increase detection accuracy.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xiaoqun Yu ◽  
Jaehyuk Jang ◽  
Shuping Xiong

Research on pre-impact fall detection with wearable inertial sensors (detecting fall accidents prior to body-ground impacts) has grown rapidly in the past decade due to its great potential for developing an on-demand fall-related injury prevention system. However, most researchers use their own datasets to develop fall detection algorithms and rarely make these datasets publicly available, which poses a challenge to fairly evaluate the performance of different algorithms on a common basis. Even though some open datasets have been established recently, most of them are impractical for pre-impact fall detection due to the lack of temporal labels for fall time and limited types of motions. In order to overcome these limitations, in this study, we proposed and publicly provided a large-scale motion dataset called “KFall,” which was developed from 32 Korean participants while wearing an inertial sensor on the low back and performing 21 types of activities of daily living and 15 types of simulated falls. In addition, ready-to-use temporal labels of the fall time based on synchronized motion videos were published along with the dataset. Those enhancements make KFall the first public dataset suitable for pre-impact fall detection, not just for post-fall detection. Importantly, we have also developed three different types of latest algorithms (threshold based, support-vector machine, and deep learning), using the KFall dataset for pre-impact fall detection so that researchers and practitioners can flexibly choose the corresponding algorithm. Deep learning algorithm achieved both high overall accuracy and balanced sensitivity (99.32%) and specificity (99.01%) for pre-impact fall detection. Support vector machine also demonstrated a good performance with a sensitivity of 99.77% and specificity of 94.87%. However, the threshold-based algorithm showed relatively poor results, especially the specificity (83.43%) was much lower than the sensitivity (95.50%). The performance of these algorithms could be regarded as a benchmark for further development of better algorithms with this new dataset. This large-scale motion dataset and benchmark algorithms could provide researchers and practitioners with valuable data and references to develop new technologies and strategies for pre-impact fall detection and proactive injury prevention for the elderly.


2011 ◽  
Vol 80-81 ◽  
pp. 490-494 ◽  
Author(s):  
Han Bing Liu ◽  
Yu Bo Jiao ◽  
Ya Feng Gong ◽  
Hai Peng Bi ◽  
Yan Yi Sun

A support vector machine (SVM) optimized by particle swarm optimization (PSO)-based damage identification method is proposed in this paper. The classification accuracy of the damage localization and the detection accuracy of severity are used as the fitness function, respectively. The best and can be obtained through velocity and position updating of PSO. A simply supported beam bridge with five girders is provided as numerical example, damage cases with single and multiple suspicious damage elements are established to verify the feasibility of the proposed method. Numerical results indicate that the SVM optimized by PSO method can effectively identify the damage locations and severity.


2017 ◽  
Vol 13 (5) ◽  
pp. 155014771770741 ◽  
Author(s):  
Kaibo Fan ◽  
Ping Wang ◽  
Yan Hu ◽  
Bingjie Dou

Author(s):  
Nishanth P

Falls have become one of the reasons for death. It is common among the elderly. According to World Health Organization (WHO), 3 out of 10 living alone elderly people of age 65 and more tend to fall. This rate may get higher in the upcoming years. In recent years, the safety of elderly residents alone has received increased attention in a number of countries. The fall detection system based on the wearable sensors has made its debut in response to the early indicator of detecting the fall and the usage of the IoT technology, but it has some drawbacks, including high infiltration, low accuracy, poor reliability. This work describes a fall detection that does not reliant on wearable sensors and is related on machine learning and image analysing in Python. The camera's high-frequency pictures are sent to the network, which uses the Convolutional Neural Network technique to identify the main points of the human. The Support Vector Machine technique uses the data output from the feature extraction to classify the fall. Relatives will be notified via mobile message. Rather than modelling individual activities, we use both motion and context information to recognize activities in a scene. This is based on the notion that actions that are spatially and temporally connected rarely occur alone and might serve as background for one another. We propose a hierarchical representation of action segments and activities using a two-layer random field model. The model allows for the simultaneous integration of motion and a variety of context features at multiple levels, as well as the automatic learning of statistics that represent the patterns of the features.


2021 ◽  
Vol 39 (11) ◽  
Author(s):  
Sahar Zolfaghari ◽  
Mohammad Hamiruce Marhaban ◽  
Siti Anom Ahmad ◽  
Asnor Juraiza Ishak ◽  
Pegah Khosropanah ◽  
...  

Motor-imagery brain-computer interfaces, as rehabilitation tools for motor-disabled individuals, could inherently enrich neuroplasticity and subsequently restore mobility. However, this endeavour's significant challenge is classifying left and right leg motor imagery tasks from non-stationary EEG signals. A subject-independent feature extraction method is essential in a BCI system, and this work involves developing a subject-independent algorithm to classify left/right leg motion intention. The Multivariate Empirical Mode Decomposition was used to decompose EEG during left and right foot movements during imagery tasks. We validated our proposed algorithm using open-access motor imagery data to detect the user's mental intention from EEG. Five subjects of various performance categories with almost 150 trials for each left/right leg MI of hand/leg/tongue, HaLT Paradigm, utilizing C3, C4, and Cz channels were examined to generalize this study to all subjects. A set of statistical features were extracted from the intrinsic mode functions, and the most relevant features were selected for classification using Sequential Floating Feature Selection. Different classifiers were trained using extracted features, and their performances' were evaluated. The findings suggest that the non-linear support vector machine is the best classification model, resulting in the mean classification sensitivity, specificity, precision, negative predictive value, F-measure, 98.15%, 90.74%, 91.97%, 98.33%, 94.72%, 94.44%, respectively. The proposed subject-independent signal processing method significantly improved the offline calibration mode by eliminating the frequency selection step, making it the common-used method for different types of MI-based BCI participants. Offline evaluations suggest that it can lead to significant increases in classification accuracy in comparison to current approaches.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5018 ◽  
Author(s):  
Kyu-Won Jang ◽  
Jong-Hyeok Choi ◽  
Ji-Hoon Jeon ◽  
Hyun-Seok Kim

Combustible gases, such as CH4 and CO, directly or indirectly affect the human body. Thus, leakage detection of combustible gases is essential for various industrial sites and daily life. Many types of gas sensors are used to identify these combustible gases, but since gas sensors generally have low selectivity among gases, coupling issues often arise which adversely affect gas detection accuracy. To solve this problem, we built a decoupling algorithm with different gas sensors using a machine learning algorithm. Commercially available semiconductor sensors were employed to detect CH4 and CO, and then support vector machine (SVM) applied as a supervised learning algorithm for gas classification. We also introduced a pairing plot scheme to more effectively classify gas type. The proposed model classified CH4 and CO gases 100% correctly at all levels above the minimum concentration the gas sensors could detect. Consequently, SVM with pairing plot is a memory efficient and promising method for more accurate gas classification.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4192
Author(s):  
Leyuan Liu ◽  
Yibin Hou ◽  
Jian He ◽  
Jonathan Lungu ◽  
Ruihai Dong

A fall detection module is an important component of community-based care for the elderly to reduce their health risk. It requires the accuracy of detections as well as maintains energy saving. In order to meet the above requirements, a sensing module-integrated energy-efficient sensor was developed which can sense and cache the data of human activity in sleep mode, and an interrupt-driven algorithm is proposed to transmit the data to a server integrated with ZigBee. Secondly, a deep neural network for fall detection (FD-DNN) running on the server is carefully designed to detect falls accurately. FD-DNN, which combines the convolutional neural networks (CNN) with long short-term memory (LSTM) algorithms, was tested on both with online and offline datasets. The experimental result shows that it takes advantage of CNN and LSTM, and achieved 99.17% fall detection accuracy, while its specificity and sensitivity are 99.94% and 94.09%, respectively. Meanwhile, it has the characteristics of low power consumption.


Sign in / Sign up

Export Citation Format

Share Document