scholarly journals Infrared–ultrasonic sensor fusion for support vector machine–based fall detection

2018 ◽  
Vol 29 (9) ◽  
pp. 2027-2039 ◽  
Author(s):  
Zhangjie Chen ◽  
Ya Wang

This article presents an infrared–ultrasonic sensor fusion approach for support vector machine–based fall detection, often required by elderly healthcare. Its detection algorithms and performance evaluation are detailed. The location, size, and temperature profile of the user can be estimated based on a novel sensory fusion algorithm. Different feature sets of the support vector machine–based machine learning algorithm are analyzed and their impact on fall detection accuracy is evaluated and compared empirically. Experiments study three non-fall activities, standing, sitting, and stooping, and two fall actions, forward falling and sideway falling, to simulate daily activities of the elderly. Fall detection accuracy studies are performed based on discretely and continuously (closer to reality) recorded experimental data, respectively. For the discrete data recording, an average accuracy of 92.2% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to 96.7% when sensor fusion is used. For the continuous data recording (180 training sets, 60 test sets at each distance), an average accuracy less than 70.0% is achieved when the stand-alone Grid-EYE is used and the accuracy is increased to around 90.3% after sensor fusion. New features will be explored in the next step to further increase detection accuracy.

Author(s):  
Zhangjie Chen ◽  
Hanwei Liu ◽  
Yuqiao Wang ◽  
Ya Wang

This paper presents a pan-tilt sensor fusion platform for activity tracking and fall-detection which can work as a reliable surveillance system with long-term care function. A low cost thermal array sensor and a distance sensor are integrated together as the sensor module. The sensor module is installed on a pan-tilt orienting mechanism with two rotation degrees of freedom to increase the field of view while reducing the number of sensors used on-board. The performance of the sensor test platform is analyzed. The location of the indoor object as well as its size can be estimated based on a novel sensor fusion algorithm. The support vector machine (SVM) based machine learning algorithm is applied for fall detection. The preliminary experiment result shows a 95% accuracy to identify falling action from similar normal indoor activity such as sitting and picking up stuff.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5018 ◽  
Author(s):  
Kyu-Won Jang ◽  
Jong-Hyeok Choi ◽  
Ji-Hoon Jeon ◽  
Hyun-Seok Kim

Combustible gases, such as CH4 and CO, directly or indirectly affect the human body. Thus, leakage detection of combustible gases is essential for various industrial sites and daily life. Many types of gas sensors are used to identify these combustible gases, but since gas sensors generally have low selectivity among gases, coupling issues often arise which adversely affect gas detection accuracy. To solve this problem, we built a decoupling algorithm with different gas sensors using a machine learning algorithm. Commercially available semiconductor sensors were employed to detect CH4 and CO, and then support vector machine (SVM) applied as a supervised learning algorithm for gas classification. We also introduced a pairing plot scheme to more effectively classify gas type. The proposed model classified CH4 and CO gases 100% correctly at all levels above the minimum concentration the gas sensors could detect. Consequently, SVM with pairing plot is a memory efficient and promising method for more accurate gas classification.


2014 ◽  
Vol 687-691 ◽  
pp. 1003-1006
Author(s):  
Xian Wei Wang ◽  
Fu Cheng Cao

In this study, using simulated falls and activities of daily living (ADL) performed by elderly subjects, the ability to discriminate between falls and ADL was investigated with wearable tri-axial accelerometer sensors, mounted on the chest. The movement data of human body analysis was performed using one-class support vector machine (SVM) to determine the feature of motion types. Experiments to detect falls are performed in four directions: forward, backward, left, and right. The preliminary results show that this method can detect the falls effectively, reduces both false positives and false negatives, while improving fall detection accuracy, and the application can offer a new guarantee for the elderly health.


2015 ◽  
Vol 764-765 ◽  
pp. 1319-1323
Author(s):  
Rong Shue Hsiao ◽  
Ding Bing Lin ◽  
Hsin Piao Lin ◽  
Jin Wang Zhou

Pyroelectric infrared (PIR) sensors can detect the presence of human without the need to carry any device, which are widely used for human presence detection in home/office automation systems in order to improve energy efficiency. However, PIR detection is based on the movement of occupants. For occupancy detection, PIR sensors have inherent limitation when occupants remain relatively still. Multisensor fusion technology takes advantage of redundant, complementary, or more timely information from different modal sensors, which is considered an effective approach for solving the uncertainty and unreliability problems of sensing. In this paper, we proposed a simple multimodal sensor fusion algorithm, which is very suitable to be manipulated by the sensor nodes of wireless sensor networks. The inference algorithm was evaluated for the sensor detection accuracy and compared to the multisensor fusion using dynamic Bayesian networks. The experimental results showed that a detection accuracy of 97% in room occupancy can be achieved. The accuracy of occupancy detection is very close to that of the dynamic Bayesian networks.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Akash Saxena ◽  
Shalini Shekhawat

With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to formulate a Cumulative Index (CI) on the basis of an individual concentration of four major pollutants (SO2, NO2, PM2.5, and PM10). Further, a supervised learning algorithm based classifier is proposed. This classifier employs support vector machine (SVM) to classify air quality into two types, that is, good or harmful. The potential inputs for this classifier are the calculated values of CIs. The efficacy of the classifier is tested on the real data of three locations: Kolkata, Delhi, and Bhopal. It is observed that the classifier performs well to classify the quality of air.


2011 ◽  
Vol 80-81 ◽  
pp. 490-494 ◽  
Author(s):  
Han Bing Liu ◽  
Yu Bo Jiao ◽  
Ya Feng Gong ◽  
Hai Peng Bi ◽  
Yan Yi Sun

A support vector machine (SVM) optimized by particle swarm optimization (PSO)-based damage identification method is proposed in this paper. The classification accuracy of the damage localization and the detection accuracy of severity are used as the fitness function, respectively. The best and can be obtained through velocity and position updating of PSO. A simply supported beam bridge with five girders is provided as numerical example, damage cases with single and multiple suspicious damage elements are established to verify the feasibility of the proposed method. Numerical results indicate that the SVM optimized by PSO method can effectively identify the damage locations and severity.


2017 ◽  
Vol 13 (5) ◽  
pp. 155014771770741 ◽  
Author(s):  
Kaibo Fan ◽  
Ping Wang ◽  
Yan Hu ◽  
Bingjie Dou

Sign in / Sign up

Export Citation Format

Share Document