Research on Single-Phase Back-to-Back SVG Solution of Power Pollution of Traction Transformer to Accessed Grid

2014 ◽  
Vol 687-691 ◽  
pp. 3411-3414
Author(s):  
Jia Yong Chen ◽  
Kun Ya Guo ◽  
Peng Jin ◽  
Shu Han Wang

Electrified railway traction transformer is a pivot that connects the electric locomotive and the public grid. Therefore, power quality problems caused by electric locomotive such as three-phase voltage imbalance, great voltage fluctuation and high harmonic content can be transmitted to the public grid via the traction transformer. To solve this problem, the solution of two sets of single-phase SVG (Static Var Generator) in back-to-back operation to solve power quality problems of the electrified railway is raised. This solution has been proved by practice effective in improving power quality of the traction transformer.

Author(s):  
Liu Yang ◽  
Qinyue Tan ◽  
Di Xiong ◽  
Zhengguang Liu

The overrun of transient power quality index caused by the large-capacity electric arc furnace (EAF) has become a prominent problem affecting the safe and stable operation of the power system. (1) In this paper, the relationship between arc furnace volt-age and current is derived based on the different stages of arc combustion, and the random variation of chaotic phenomenon of the arc voltage are simulated. Established an EAF model suitable for the study of transient power quality problems. (2) Take 50t AC EAF as an example to analyze the reactive power impact and the influence on the point of common coupling (PCC) voltage caused by the three-phase short circuit of the electrode. The results show that the experimental results are consistent with the theoretical analysis, verifying the correctness and effectiveness of the model. (3) When the three-phase short-circuit occurs, the reactive power impact is nearly 6 times that of normal operation, the short-circuit current is 2.66 times that of normal operation, and the effective value of the PCC voltage has dropped by 40.37%, which provides a theoretical basis for real-time compensation of impulsive reactive power and improvement of the transient power quality of the EAF.


2020 ◽  
Vol 39 (6) ◽  
pp. 8225-8235
Author(s):  
Bandla Pavan Babu ◽  
V Indragandhi

In an Electrical system, Power Quality (PQ) is becoming significant to all types of consumers. With the increase of power demand from end users, maintaining the quality of power within the limitations is a major problem. In this paper, harmonic analysis in a grid connected three phase induction motor is tested according to PQ international standards which are found in the International Electro technical Commission (IEC). These mentioned standards are maintained in the transmission line and fed to the induction motor through a regenerative grid simulator. With the results obtained, execution of this fuzzy control system can be investigated through the digital simulation, which is based on MATLAB-SIMULINK package. It provides human operands to constitute a knowledge base which is used for diagnosing power quality and capable of predicting abnormal operation in Industries.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2021 ◽  
Author(s):  
Yuehui Chen ◽  
Zhao Huang ◽  
Zhenfeng Duan ◽  
Pengwu Fu ◽  
Guandong Zhou ◽  
...  

This paper solves the problem of reactive power and harmonics compensation in a high-voltage (HV) distribution network supplying nonlinear loads. An inductive filtering (IF) approach where passive filters connect to the filtering winding of a four-winding inductive filtering transformer (FW-IFT) is presented to enhance the power quality of the public grid. This method can not only greatly suppress harmonic currents of the medium and/or low-voltage (LV) side, but also prevent them from flowing into the public grid. The new main circuit topology, where the FW-IFT has specific filtering winding by adopting the ampere-turn balance of the transformer, is presented. On the basis of the structure of the FW-IFT, the magnetic potential balanced equation and inductive filtering technology, its equivalent circuit and mathematical model are established, and the filtering performances are analyzed in detail. Simulation and experimental results rated at SN-10/0.38 of the FW-IFT are presented to prove the efficacy of the comprehensive enhancement of power quality on the grid side.


2012 ◽  
Vol 512-515 ◽  
pp. 1199-1204
Author(s):  
Yong Zhang ◽  
Jing Shuang Shen ◽  
Hai Feng Zheng

This paper explores methods to improve the power quality of large, single-phase, thyristor controlled equipment within industrial plants. An advanced shunt single phase power filter for the compensation of instantaneous harmonic current components in direct coupled booster melting in glass furnaces is presented. The validity of the excellent filtering characteristics is verified by a previous installation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cheng-Ting Hsu ◽  
Hung-Ming Huang ◽  
Tsun-Jen Cheng ◽  
Lian-Jou Tsai

This paper presents the three-phase voltage and unbalance analysis for the distribution system with the loading of a light rail transit (LRT) tram. To investigate the dynamic responses of the system voltage and current, this paper adopts the Alternative Transients Program (ATP) software to model and simulate a multigrounded four-wire distribution system with an LRT loading. Two different definitions about unbalance are used to evaluate the problem. In this paper, the traction supply substation (TSS) with a single-phase transformer configuration is designed first for providing the electric power to the trams of LRT. However, it may result in the significant neutral line current and unbalance phenomenon to deteriorate the power quality of the distribution system. A Le-Blanc connection transformer in the TSS is therefore proposed to solve the problems.


2015 ◽  
Vol 740 ◽  
pp. 359-363
Author(s):  
Shi Long Chen ◽  
Lu Luo ◽  
Yan Wu Wang

The TCR single-phase to three-phase power converter has been widely used in electrified railway system as its simple control raw and high reliability. The research on main circuit parameters and its control law is necessary to design suitable TCR single phase to three phase power converter. This paper analyses the main circuit of TCR single phase to three phase power converter, and acquires the parameters configuration theory of each element in main circuit and control law of converter when the power factor varies from 0.7 to 0.9.


2019 ◽  
Vol 16 (3) ◽  
pp. 289-310 ◽  
Author(s):  
Vinay Naguboina ◽  
Satish Gudey

In this work, a Three phase Transformerless Hybrid Series Active Power Filter (THSeAF) based on Sliding Mode Control (SMC) is proposed to mitigate the voltage and current distortions present in an electrical distribution systems (EDS). A Sliding Mode Controller is designed by controlling the parameters present on the load side as well as source side of the system. Three separate voltage source converters (VSC) are used. The mod1elling of the system is derived by considering a single-phase system by using state space analysis. The frequency response characteristics have been derived for the single-phase system and the stability of the system is studied. It is observed that the system has good stability margins when the SMC is applied at the source side compared to load side. Simulation results obtained in PSCAD/EMTDC v4.6 have been observed for power quality issues like voltage sags, voltage swells, voltage distortions, voltage unbalances and their concurrent occurrence. The approach of stationary reference frame was used for source side control and PQ theory is used for load side control. It is observed that the proposed controller works well in obtaining a stable and constant load voltage during these power quality issues. The difference in settling time observed is around 4 ms for the load side and source side control. The THD present in the load voltage is near about 1%. The SMC is found to be robust in obtaining a constant load voltage with low THD and an improved power factor.


2020 ◽  
Vol 9 (8) ◽  
pp. e836986151
Author(s):  
Agus Dwi Santoso ◽  
Ferry Budi Cahyono ◽  
Widyo Tri Laksana ◽  
Yosi Nurfalah

A number of power quality issues including electrical harmonics, poor power factor, and voltage instability and imbalance impact on the efficiency of electrical equipment. To support that equipment operates optimally, electrical power is generated must be have good quality. This study has a purpose to examine the power quality of electrical system AHTS (Anchor Handling Tug Supply) vessel. This research was done by quantitative method. Computational techniques used by the software of Total Harmonic Distortion (THD), which shares characteristics and Electrochemical Impedance Spectroscopy (EIS). The result of this analysis indicated that Electrical system in VM INPOSH REGENT have quality power very good of utility systems during full way condition, however during maneuver, there was a particularly high harmonic from non-linier devices used as motor control, which functional a role propulsion. Based on the result above, it can be concluded that after filtering so that harmonic can correct until perimeter secure ABS standard, system is very good during maneuver long site and maneuver on DP system.


Author(s):  
P Ankineedu Prasad A Ayyappa Swamy and

The major concern in a growing power quality is harmonics distortion which is caused by the non-linear nature of the loads. This problem has drawn much attention from utilities, users and industries. To reduce the harmonic distortion for improving the power quality of the system a custom power devices has been proposed. A static compensator (STATCOM) is implemented at distribution level for overcoming several power quality problems. In this paper, new control technic i.e AI is proposed on shunt compensator to estimates the weight values of load currents. The control approach is based on the convergence of the load currents and property of the input signal. A working prototype of the STATCOM is implemented using three-phase VSC and AI control technique based PWM controller approach is developed in MATLAB/SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document