Effect of Corrosion Inhibitor on the Compressive Strength of Polymer-Modified Cement Mortars

2014 ◽  
Vol 692 ◽  
pp. 482-485
Author(s):  
Jae Eun Jeong ◽  
Keun Hyeok Yang ◽  
In Gu Yun

This study examined initial flow and compressive strength development of polymer-modified cement mortar according to the addition of corrosion inhibitor. Test results showed that with the increase of the amount of corrosion inhibitor, the initial flow of mortars increased whereas compressive strength decreased. The strength development of mortar specimens could be reasonably predicted using the modified ACI 209 equations.

2011 ◽  
Vol 284-286 ◽  
pp. 310-313
Author(s):  
Zhi Gang Liu ◽  
Li Rong Yang ◽  
Jun Cong Wei ◽  
Bao Hui Zhao ◽  
Xiao Xin Feng

The compressive strength and piezoresistive property of cement mortar with low adding level of multi-walled carbon nanotubes (MWCNTs) were investigated. Experimental results showed that the compressive strength of the MWCNTs/cement mortars increased with the adding amount of MWCNTs content for all the curing ages. Silica fume promoted the compressive strength development by well bonding with MWCNTs and filling effect. The electrical resistance changed synchronously with the compressive strength and the amount of the changes varied with the stress and MWCNTs addition levels. Higher MWCNTs doping level improved the piezoresistive sensitivity of the mortar. The mortar with silica fume (5-10% by weight of cement) exhibited better piezoresistive response than that without silica fume at the same MWCNTs doping levels.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6654
Author(s):  
Jakub Popławski ◽  
Małgorzata Lelusz

Biomass combustion is a significant new source of green energy in the European Union. The adequate utilization of byproducts created during that process is a growing challenge for the energy industry. Biomass fly ash could be used in cement composite production after appropriate activation of that material. This study had been conducted to assess the usefulness of mechanical and physical activation methods (grinding and sieving), as well as activation through the addition of active silica in the form of silica fume, as potential methods with which to activate biomass fly ash. Setting time, compressive strength, water absorption and bulk density tests were performed on fresh and hardened mortar. While all activation methods influenced the compressive strength development of cement mortar with fly ash, sieving of the biomass fly ash enhanced the early compressive strength of cement mortar. The use of active silica in the form of silica fume ensured higher compressive strength results than those of control specimens throughout the entire measurement period.


1970 ◽  
Vol 3 ◽  
Author(s):  
Md Moinul Islam ◽  
Md Saiful Islam ◽  
Md Aftabur Rahman ◽  
Amrita Das

This paper presents an experimental investigation carried out to study the effects of Ground Granulated Blast Furnace Slag (GGBFS) on strength development of mortar and the optimum use of slag in mortar. Cement was partially replaced with seven percentages (10%, 20%, 30%, 40%, 50%, 60% and 70%) of slag by weight. Ordinary Portland cement (OPC) mortar was also prepared as reference mortar. A total of 400 cube and briquet mortar specimens were cast and compressive as well as tensile strength of the mortar specimens were determined at curing age of 3, 7, 14, 28, 60, 90 and 180 days. Test results show that strength increases with the increase of slag up to an optimum value, beyond which, strength values start decreasing with further addition of slag. Among the seven slag mortars, the optimum amount of cement replacement is about 40%, which provides 19% higher compressive strength and 25% higher tensile strength as compared to OPC mortar. KEY WORDS: Slag; Cement; Mortar; Compressive Strength; Tensile Strength; Hydration. DOI: http://dx.doi.org/10.3329/mist.v3i0.8053


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2136
Author(s):  
Shaokang Zhang ◽  
Ru Wang ◽  
Linglin Xu ◽  
Andreas Hecker ◽  
Horst-Michael Ludwig ◽  
...  

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye’elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.


2020 ◽  
Vol 1 ◽  
Author(s):  
Mohammed A. Hefni

Abstract The use of natural pozzolans in concrete applications is gaining more attention because of the associated environmental, economic, and technical benefits. In this study, reference cemented mine backfill samples were prepared using Portland cement, and experimental samples were prepared by partially replacing Portland cement with 10 or 20 wt.% fly ash as a byproduct (artificial) pozzolan or pumice as a natural pozzolan. Samples were cured for 7, 14, and 28 days to investigate uniaxial compressive strength development. Backfill samples containing 10 wt.% pumice had almost a similar compressive strength as reference samples. There is strong potential for pumice to be used in cemented backfill to minimize costs, improve backfill properties, and promote the sustainability of the mining industry.


Sign in / Sign up

Export Citation Format

Share Document