scholarly journals Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6654
Author(s):  
Jakub Popławski ◽  
Małgorzata Lelusz

Biomass combustion is a significant new source of green energy in the European Union. The adequate utilization of byproducts created during that process is a growing challenge for the energy industry. Biomass fly ash could be used in cement composite production after appropriate activation of that material. This study had been conducted to assess the usefulness of mechanical and physical activation methods (grinding and sieving), as well as activation through the addition of active silica in the form of silica fume, as potential methods with which to activate biomass fly ash. Setting time, compressive strength, water absorption and bulk density tests were performed on fresh and hardened mortar. While all activation methods influenced the compressive strength development of cement mortar with fly ash, sieving of the biomass fly ash enhanced the early compressive strength of cement mortar. The use of active silica in the form of silica fume ensured higher compressive strength results than those of control specimens throughout the entire measurement period.

2011 ◽  
Vol 284-286 ◽  
pp. 310-313
Author(s):  
Zhi Gang Liu ◽  
Li Rong Yang ◽  
Jun Cong Wei ◽  
Bao Hui Zhao ◽  
Xiao Xin Feng

The compressive strength and piezoresistive property of cement mortar with low adding level of multi-walled carbon nanotubes (MWCNTs) were investigated. Experimental results showed that the compressive strength of the MWCNTs/cement mortars increased with the adding amount of MWCNTs content for all the curing ages. Silica fume promoted the compressive strength development by well bonding with MWCNTs and filling effect. The electrical resistance changed synchronously with the compressive strength and the amount of the changes varied with the stress and MWCNTs addition levels. Higher MWCNTs doping level improved the piezoresistive sensitivity of the mortar. The mortar with silica fume (5-10% by weight of cement) exhibited better piezoresistive response than that without silica fume at the same MWCNTs doping levels.


1989 ◽  
Vol 178 ◽  
Author(s):  
Kirsten G. Jeppesen

AbstractSpray dried absorption products (SDA) having special characteristics are used as substitutes for cement in the preparation of mortars; the qualities of the resulting mixed mortars are described. Conditions are described for mortar mixes, data for which were presented at the MRS Fall Meeting 1987.The influence of the composition of the SDA on water requirement and setting time has been studied. A full scale project involving 3 precast, reinforced concrete front-elements containing 20 and 30 wt.% SDA is described. Strength development, mineralogical composition and corrosion were monitored for two years.A non-standard freeze-thaw experiment was performed which compares mortars containing SDA and fly ash (FA) and also shows the effect of superplasticizer.The possibility of improving the SDA by grinding has been tested and a limited improvement has been found. The strength of the mixed mortars seems slightly influenced by the grain size of SDAGypsum (CaSO4·2H2O), synthetic calcium-sulphite (CaSO3·½H2O) and 2 SDAs have been used as retarders for cement clinker. Mortar test prisms have been cast and comparative strengths after curing for 3 years are reported


2018 ◽  
Vol 70 (11) ◽  
pp. 541-557 ◽  
Author(s):  
Gollapalli S. Vijaya Bhaskara ◽  
Kanchi Balaji Rao ◽  
Madambikkattil B. Anoop

2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Oriana Rojas-Duque ◽  
Lina Marcela Espinosa ◽  
Rafael A. Robayo-Salazar ◽  
Ruby Mejía de Gutiérrez

This article reports the production and characterization of a hybrid concrete based on the alkaline activation of a fly ash (FA) of Colombian origin, which was added with 10% Portland cement (OPC) in order to promote the compressive strength development at room temperature. The alkali-activated hybrid cement FA/OPC 90/10 was classified as a low heat reaction cement (type LH), according to American Society of Testing Materials, ASTM C1157; the compressive strength was of 31.56 MPa and of 22.68 MPa (28 days) at the levels of paste and standard mortar, respectively, with an initial setting time of 93.3 min. From this binder, a hybrid concrete was produced and classified as a structural type, with a compressive strength of 23.16 MPa and a flexural modulus of rupture of 5.32 MPa, at 28 days of curing. The global warming potential index (GWP 100), based on life cycle analysis, was 35% lower than the reference concrete based on 100% OPC. Finally, its use was validated in the manufacture of a solid block-type construction element, which reached a compressive strength of 21.9 MPa at 28 days, exceeding by 40.6% the minimum strength value established by the Colombia Technical Standard, NTC 4026 (13 MPa) to be classified as high class structural blocks.


2012 ◽  
Vol 253-255 ◽  
pp. 482-488
Author(s):  
Hai Bo Zhang ◽  
Xue Mao Guan ◽  
Hai Tao Shang

This paper examined the mechanical property of rubber mortars with different amount of rubber granules addition and the influence of fly ash, slag and silica fume. The increase of rubber granules results in the decrease in compressive and flexural strength of rubber mortar, but increases the ratio of flexural to compressive strength. The fly ash, slag and silica fume are useful for improving the mechanical property of mortar. The examined contact angle of water against rubber is 99.5°, which suggests the rubber surface is hydrophobic, and the hydrophobic surface interprets the weak interface between rubber and cement matrix.


Sign in / Sign up

Export Citation Format

Share Document