Mechanical and Thermal Properties of PCM Wallboards Based on Gypsum and Paraffin

2011 ◽  
Vol 71-78 ◽  
pp. 3553-3557
Author(s):  
Xiao Peng Wang ◽  
Zhen Qiu Shen ◽  
Yi Zhang ◽  
Dong Xu Li

This paper studied on preparation, mechanical and thermal properties of two PCM wallboards made of gypsum and paraffin composite, PCM particles wallboard and PCM bag packed wallboard. Density, flexural and compressive strength and thermal conductivity of PCM particles wallboards deceased as PCM particles dosage increasing. Only PCM particles wallboard with PCM particles dosage 30% is suitable. Thermal comparison between PCM wallboards and pure gypsum wallboard shows that two PCM wallboards have better thermal properties and PCM wallboards can be used in building envelope to cut down building energy-consumption.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hongyu Fan ◽  
Ali Tekeei ◽  
Galen J. Suppes ◽  
Fu-Hung Hsieh

Water-blown rigid polyurethane (PU) foams were made from 0–50% soy-phosphate polyol (SPP) and 2–4% water as the blowing agent. The mechanical and thermal properties of these SPP-based PU foams (SPP PU foams) were investigated. SPP PU foams with higher water content had greater volume, lower density, and compressive strength. SPP PU foams with 3% water content and 20% SPP had the lowest thermal conductivity. The thermal conductivity of SPP PU foams decreased and then increased with increasing SPP percentage, resulting from the combined effects of thermal properties of the gas and solid polymer phases. Higher isocyanate density led to higher compressive strength. At the same isocyanate index, the compressive strength of some 20% SPP foams was close or similar to the control foams made from VORANOL 490.


2015 ◽  
Vol 1131 ◽  
pp. 182-185
Author(s):  
Pongsak Jittabut

This research article presents the mechanical and thermal properties of cement-based composite for thermal energy storage materials. The effects of nanosilica particle size and concentration determined by mixing nanosilica particle size of 50 nm, using nanosilica were of 1-5 wt%. Thermal properties coefficients were tested using a direct measuring instrument with surface probe (ISOMET2114). The influence of nanosilica on the performance, such as compressive strength, bulk density, thermal conductivity, volume heat capacity and thermal diffusivity of hardened composite cement pastes were studied for future solar thermal energy materials with better performance. According to the development of thermal storage materials and their application environment requirement in solar thermal power, the specimens were subjected to heat at 350, and 900°C. It were observed that, before heating, the compressive strength is optimized at nanosilica amount of 4wt% at the age of 28 days. Moreover, after heating at 350 oC and 900°C, the thermal conductivity and volume heat capacity of the cement paste enriched with nanosilica were significantly lesser than that of the before heating one.


Author(s):  
Youssef El Moussi ◽  
Laurent Clerc ◽  
Jean-Charles Benezet

The use of bio-based concretes performed with lignocellulosic aggregates constitute an interesting solution for reducing the energy consumption, greenhouse gas emissions and CO2 generated by the building sector. Indeed, bio-based materials could be used as an alternative of traditional materials such as expended polystyrene and mineral resources (e.g. glass and rock wools) for insulation. Furthermore, these bio-based concretes are known for their interesting insulation properties, indeed they allow to enhance thermal properties of buildings and enables moisture management which lead to design efficient building materials. For this purpose, bio-based concrete using rice straw as aggregate are studied in this present work. The impact of the characteristics of rice straw particle (particle size distribution, bulk density, and water absorption capacity, etc.) on both the mechanical and thermal properties of the bio-based concrete are investigated. Five formulations of rice straw concrete are examined, compared and then classified in terms of insulation properties and mechanical properties. The assessments are based on the measurement of density and thermal conductivity. The variation of compressive strength in function of the characteristics (mean particle length) of rice straw particle are assessed and discussed. The investigation covers also the porosity and density. Tests are also carried out on agricultural by-products with a view to highlight their chemical, physical and structural proprieties. The results show that the use of large particles with low water absorption capacity induce lighter concretes with the density between 339 and 505 kg/m3 and lead to a high compressive strength with a high mechanical deformability. Furthermore, it appears that an increase in the average length of rice straw particle lead to decrease of thermal conductivity of bio-based concretes. It varies from 0.062 to 0.085 W/(m.K).


2011 ◽  
Vol 243-249 ◽  
pp. 6942-6946
Author(s):  
Na Li ◽  
Yan Qian Zhao ◽  
Qi Liu

Taking residential building in hot summer and cold winter zone as research subject, studies the influence factors and sensitivity of building consumption. Choosing three factors of building orientation, building envelope and window-wall ratio for analysis, compares the calculation results by using DeST-h software with energy consumption simulating calculation. The results show that the effect of building envelope heat transfer coefficient on building energy consumption is the greatest. So that is the most sensitive factor, which is followed by building orientation, the effect of window-wall ratio is relatively small.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zou Huifen ◽  
Fei Yingchao ◽  
Yang Fuhua ◽  
Tang Hao ◽  
Zhang Ying ◽  
...  

This paper focuses on the operation principles of the double-skin facade (DSF) in winter of severe cold area. The paper discussed the main influence factors of building energy consumption, including the heat storage cavity spacing, the air circulation mode, the building envelope, and the building orientation. First, we studied the relationship among the thermal storage cavity spacing, the temperature distribution in the cavity of the DSF, and the indoor temperature. Then, we discussed the influence on the ambient temperature in the building exerted by the air circulation system of the double-skin facade. Finally, we analyzed the influence on the whole building energy consumption of the DSF buildings under the situation of different building envelopes and different building orientations. Based on the results of the numerical simulation, the paper put forward an operation strategy analysis of the DSF buildings in severe cold area, in order to achieve the purpose of building energy saving.


2014 ◽  
Vol 587-589 ◽  
pp. 247-251
Author(s):  
Hong Lei Ma

The energy consumption of a residential building Zhangjiakou area in different envelope was numerically simulated by using DeST software, and the influence factors on building energy consumption was analyzed, which provides a certain reference for optimization design of building structure Zhangjiakou region.


2015 ◽  
Vol 804 ◽  
pp. 115-118
Author(s):  
Pongsak Jittabut

This research article presents the mechanical and thermal properties of cement-based composite for thermal energy storage materials enriched with containing nanoTiO2 particle size (25 nm) and concentration (1-5 wt.%) were systematically investigated. Thermal properties coefficients were tested using a direct measuring instrument with surface probe (ISOMET2114). The influence of nanoTiO2 on the performance, such as compressive strength, bulk density, thermal conductivity, volume heat capacity and thermal diffusivity of hardened composite cement pastes were studied for future solar thermal energy materials with better performance. According to the development of thermal storage materials and their application environment requirement in solar thermal power, the specimens were subjected to heat at 350°C and 900°C. It was observed that, before heating, the compressive strength is optimized at nanoTiO2 amount of 2 wt%. Moreover, after heating at 350 °C and 900°C, the thermal conductivity and volume heat capacity of the cement paste enriched with nanoTiO2 were significantly lesser than that of the before heating one.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3210 ◽  
Author(s):  
Chao Ding ◽  
Nan Zhou

Building energy consumption accounts for 36% of the overall energy end use worldwide and is growing rapidly as developing countries continue to urbanize. Understanding the energy use at urban scale will lay the foundation for identification of energy efficiency opportunities to be deployed at speed. China has almost half of global new constructions and plays an important role in building suitability. However, an open source national building energy consumption database is not available in China. To provide data support for building energy consumptions, this paper used a simulation method to develop an urban building energy consumption database for a pilot city in Wuhan, China. First, residential, small, and large office building archetype energy models were created in EnergyPlus to represent typical building energy consumption in Wuhan. The baseline reference model simulation results were further validated using survey data from the literature. Second, stochastic simulations were conducted to consider different design parameters and occupants’ energy usage intensity scenarios, such as thermal properties of the building envelope, lighting power density, equipment power density, HVAC (heating, ventilation and air conditioning) schedule, etc. A building energy consumption database was generated for typical building archetypes. Third, data-driven regression analysis was conducted to support quick building energy consumption prediction using key high- level building information inputs. Finally, a web-based urban energy platform and an interface were developed to support further third-party application development. The research is expected to provide fast energy efficiency building design solutions for urban planning, new constructions as well as building retrofits.


Sign in / Sign up

Export Citation Format

Share Document