The Design and Research of Hydraulic Drive Auto Lift Machine Based on Solidworks

2014 ◽  
Vol 711 ◽  
pp. 108-111
Author(s):  
Jing Run Yan ◽  
Jian Ming Liang ◽  
Shu Zheng Shi ◽  
Chun Hua Zhu ◽  
Yu Ni Xiao

Double-column vehicle lift is a lifting equipment commonly used in auto repair and maintenance units, which is widely applied to the repair and maintenance of small vehicles such as cars. The design is a double-column vehicle lift driven by hydraulic. It mainly consists of lifting device, synchronous drive, column and bracket arm. The hydraulic circuit of hydraulic lifting device is designed. Currently, the articles concerning solidworks in the design of hydraulic drive lift only focus on unilateral appliance. When it comes to the design of the system, most of them concentrate on part modeling, virtual assembly, finite element analysis of parts ,etc, or a partial function of certain lifting machine. Seldom of them make a systematic research concerning motion stimulation. This paper, however, makes a three-dimensional virtual modeling for the lifting machine by the use of solidworks. In addition, it makes a structure verification of lift with assembly and motion simulation.

2014 ◽  
Vol 596 ◽  
pp. 640-645
Author(s):  
Peng Lu ◽  
Dao Lai Cheng ◽  
Gang Shi ◽  
Zhi Hao Zhou ◽  
Nan Kun Li

It will use SolidWorks to design structure of Manipulator and to establish the Three-dimensional Modeling based on automated welding robot of Shanghai Bamac Electric Technology Co., Ltd.,then by using the plug of simulation and motion of SolidWorks, it will focus on the Motion Simulation and Finite Element Analysis of the Manipulator. Finally the trajectory and the work space of the Manipulate can be received, and provide a basis of manipulator analysis in order to optimize the manipulator for the company.


2010 ◽  
pp. 159-170
Author(s):  
Mercedes Gallas

The Finite Element Method (FEM) is a widely applied mathematical model that permit us to know the biomechanical behavior of the human mandible in various clinical situations under physiological and standardized trauma conditions. The three-dimensional FEM provides to simulate force systems applied and allows analysis of the response of the jawbone to the loads in 3D space. Clinical extrapolations from FEM may not give absolute values but they will provide detailed description of biomechanical pattern and a prediction of regional stresses distribution. This virtual modeling is useful to choose the most efficient localization and design of miniplate osteosynthesis and to test new biomaterials.


2013 ◽  
Vol 385-386 ◽  
pp. 721-725
Author(s):  
Shu Fang Zhou ◽  
Yi Zheng ◽  
Na Wang

In this paper, the three-dimensional model of derusting spray painting robot is established with 3-D software SolidWorks; and the afinite element model of the vertical guide rail is set up with ANSYS. The static analysis is carried on, based on the motion simulation analysis result of MSC. ADAMS. Stress and strain distribution is intuitively obtained under the worst condition, which provides basis for improving strength design.


2012 ◽  
Vol 502 ◽  
pp. 407-411
Author(s):  
Mei Ying Liu ◽  
Rui Yang ◽  
Xiu Wen Chu

Vertical hammer mill is widely used in food and feed processing factory. It contains the rotor, sieve plate, machine body, feeding device, discharge device, diver device and etc. Traditional design method used two-dimensional drawings to express three-dimensional information of parts, which was abstract and difficult to be modified. This research utilized 3D software Pro/E to carry out three-dimensional designing, modeling, virtual assemble and motion simulation, and used structural mechanics analysis module Pro/Mechanical to carry out finite element analysis of key parts to optimize design of vertical hammer mill. In the designing process designer can easily modify the parameters, and directly observe the shape, location and movement of parts, which can greatly improve the design efficiency and level.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2013 ◽  
Vol 41 (1) ◽  
pp. 60-79 ◽  
Author(s):  
Wei Yintao ◽  
Luo Yiwen ◽  
Miao Yiming ◽  
Chai Delong ◽  
Feng Xijin

ABSTRACT: This article focuses on steel cord deformation and force investigation within heavy-duty radial tires. Typical bending deformation and tension force distributions of steel reinforcement within a truck bus radial (TBR) tire have been obtained, and they provide useful input for the local scale modeling of the steel cord. The three-dimensional carpet plots of the cord force distribution within a TBR tire are presented. The carcass-bending curvature is derived from the deformation of the carcass center line. A high-efficiency modeling approach for layered multistrand cord structures has been developed that uses cord design variables such as lay angle, lay length, and radius of the strand center line as input. Several types of steel cord have been modeled using the developed method as an example. The pure tension for two cords and the combined tension bending under various loading conditions relevant to tire deformation have been simulated by a finite element analysis (FEA). Good agreement has been found between experimental and FEA-determined tension force-displacement curves, and the characteristic structural and plastic deformation phases have been revealed by the FE simulation. Furthermore, some interesting local stress and deformation patterns under combined tension and bending are found that have not been previously reported. In addition, an experimental cord force measurement approach is included in this article.


Sign in / Sign up

Export Citation Format

Share Document