The Biocompatibility of Ti Alloy Improved by Nitrogen-Doped Diamond-Like Carbon Films

2014 ◽  
Vol 711 ◽  
pp. 250-254 ◽  
Author(s):  
Wufanbieke Baheti ◽  
Ming Xin Li ◽  
Fu Guo Wang ◽  
Jin Ge Song ◽  
Long Hua Xu ◽  
...  

The nitrogen-doped diamond-like carbon film was prepared on Ti6Al4V alloy by using plasma enhanced chemical vapor deposition (PECVD) technique,and its biocompatibility was studied.The surface morphology,chemical composition and contact angle were measured by scanning electron microscope (SEM),X-ray photoelectron spectroscopy(XPS),Raman Spectrometer and contact angle measuring device. Finally, the proliferation rate and cellular morphology of 3T3-E1 osteoblast cells on different sample surfaces were tested and Image J software was used to statistically analyze the count of the adhered cells. The results showed that cell adhesion and proliferation were significantly (P<0.05) increased on nitrogen-doped diamond-like carbon films , which illustrated that N doping improved the biocompatibility of DLC films. This finding has potential clinical application value to modify titanium alloy for new bone formation.

2006 ◽  
Vol 13 (01) ◽  
pp. 1-6 ◽  
Author(s):  
M. RUSOP ◽  
S. ABDULLAH ◽  
J. PODDER ◽  
T. SOGA ◽  
T. JIMBO

Nitrogenated diamond-like carbon films have been deposited on glass and p-type Si (100) substrates by radio frequency (r.f.) plasma-enhanced chemical vapor deposition (PECVD) with a frequency of 13.56 MHz at room temperature using CH 4 as precursor of carbon source and H 2 as a carrier gas. The deposition was performed at a different flow rate of nitrogen from 0 to 12 sccm under a constant r.f. power. The effect of nitrogen incorporation on the bonding states and growth kinetics of the deposited films have been investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy and optical properties by UV spectroscopy measurement. Our experimental results show that the incorporation of nitrogen has a considerable effect on the properties of the deposited films. FTIR spectra show that the nitrogen is bonded to carbon and hydrogen as C=N , C≡N , N–H and C–H bonding configurations in the as-deposited film. The incorporation of nitrogen is found to shift the Raman G peak toward the higher wave number and to increase the Raman I D /I G ratio demonstrating the graphitic character of the hydrogenated amorphous carbon–nitrogen films. Band gap is found to reduce with the increase in nitrogen concentration.


2007 ◽  
Vol 21 (08) ◽  
pp. 455-466 ◽  
Author(s):  
J. PODDER ◽  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO

Boron–nitrogen-doped amorphous carbon (a-C:H:B:N) films have been deposited onto glass and n-type Si(100) substrates by radio frequency (r.f.) plasma-enhanced chemical vapor deposition at a frequency of 13.56 MHz at room temperature using CH 4 as precursor of carbon source and H2 as a carrier gas. The film deposition was performed in the presence of crystalline boron source at different flow rates of 0, 6, 8, 10, 12 sccm of nitrogen under constant r.f. power and fixed partial pressure of mixed CH 4, N 2, and H 2 gases. Effects of boron and nitrogen doping on the bonding states, growth kinetics and optical properties of the as-deposited films have been examined by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. The experimental results show that the incorporation of boron and nitrogen has a considerable effect on the properties of the deposited films. FTIR spectra show that the nitrogen is bonded to carbon and hydrogen as C=N , N–H and C–H bonding configurations in the as-deposited film. The incorporation of boron and nitrogen shifts the G-peak towards the higher wave number and an increase in the I D /I G ratio demonstrating the graphitic character of the a-C:H:B:N films. Optical band gap is found to be reduced from 1.62 to 1.35 eV with the increase in nitrogen concentration in the presence of boron.


1991 ◽  
Vol 223 ◽  
Author(s):  
Qin Fuguang ◽  
Yao Zhenyu ◽  
Ren Zhizhang ◽  
S.-T. Lee ◽  
I. Bello ◽  
...  

ABSTRACTDirect ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.


2010 ◽  
Vol 42 (12-13) ◽  
pp. 1702-1705 ◽  
Author(s):  
R. Maheswaran ◽  
R. Sivaraman ◽  
O. Mahapatra ◽  
P. C. Rao ◽  
C. Gopalakrishnan ◽  
...  

1999 ◽  
Vol 585 ◽  
Author(s):  
Douglas H. Lowndes ◽  
Vladimir I. Merkulov ◽  
L. R. Baylor ◽  
G. E. Jellison ◽  
D. B. Poker ◽  
...  

AbstractThe principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission. Carbon films with variable sp3-bonding fraction were deposited on n-type Si substrates by ArF (193 nm) pulsed-laser ablation (PLA) of a pyrolytic graphite target, and by direct metal ion beam deposition (DMIBD) using a primary Cs+ beam to generate the secondary C- deposition beam. The PLA films are undoped while the DMIBD films are doped with Cs. The kinetic energy (KE) of the incident C atoms/ions was controlled and varied over the range from ∼25 eV to ∼175 eV. Earlier studies have shown that C films' sp3-bonding fraction and diamond-like properties can be maximized by using KE values near 90 eV. The films' surface morphology, sp3–bonding fraction, and Cs-content were determined as a function of KE using atomic force microscopy, TEM/EELS, Rutherford backscattering and nuclear reaction measurements, respectively. Field emission (FE) from these very smooth undoped and Cs-containing films is compared with the FE from two types of deliberately nanostructured carbon films, namely hot-filament chemical vapor deposition (HF-CVD) carbon and carbon nanotubes grown by plasma-enhanced CVD. Electron field emission (FE) characteristics were measured using ∼25-μm, ∼5-μm and ∼1-μm diameter probes that were scanned with ∼75 nm resolution in the x-, y-, and z-directions in a vacuum chamber (∼5 × 10-7 torr base pressure) equipped with a video camera for viewing. The hydrogen-free and very smooth a-D or a-C films (with high or low sp3 content, and with or without ∼1% Cs doping) produced by PLD and DMIBD are not good field emitters. Conditioning accompanied by arcing was required to obtain emission, so that their subsequent FE is characteristic of the arc-produced damage site. However, deliberate surface texturing can eliminate the need for conditioning, apparently by geometrical enhancement of the local electric field. But the most promising approach for producing macroscopically flat FE cathodes is to use materials that are highly nanostructured, either by the deposition process (e.g. HF-CVD carbon) or intrinsically (e.g. carbon nanotubes). HF-CVD films were found to combine a number of desirable properties for FE displays and vacuum microelectronics, including the absence of conditioning, low turn-on fields, high emission site density, and apparent stability and durability during limited long-term testing. Preliminary FE measurements revealed that vertically aligned carbon nanotubes are equally promising.


2013 ◽  
Vol 662 ◽  
pp. 505-510 ◽  
Author(s):  
Jium Fang ◽  
Maw Tyan Sheen ◽  
Ming Der Jean

A new approach with adaptive network-based fuzzy inference systems (ANFIS) based on experimental designs was used to model and characterize the tribological behaviors of diamond-like carbon (DLC) films deposited by a magnetron sputtering system. An orthogonal array experiment was introduced and the effects of deposited parameters on the films were systematically explored. The films were analyzed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). In this study, a group of highly developed hillock-like textures appeared and a lower wear volume loss became visible in the DLC films. Furthermore, the predicted values and experimental results, in which the ANFIS effectively predicts the tribological behaviors of the DLC films, are similar. It was experimentally confirmed the ANFIS predictions agreed with the experiments. Therefore, the experimental results demonstrate the tribological properties on DLC multilayer films are accurately predicted by ANFIS, thereby justifying the reliability and feasibility of the approach.


Sign in / Sign up

Export Citation Format

Share Document