Formation of Bio-Fuel from Waste Plastic Scrap

2015 ◽  
Vol 766-767 ◽  
pp. 551-556
Author(s):  
B. Kanimozhi ◽  
Amit Tanaji Shinde ◽  
Ashutosh Kumar ◽  
Alok Kumar

The objective of the paper is to investigate the formation of Bio-fuel from waste plastic scrap. The experiment was carried out by converting the waste plastic into useful alternative oil by means of pyrolysis process. Main component of working model were furnace as heating coil and condenser as cooling coil tube. The arrangements have made to continue the process constantly. The waste plastics have kept in furnace. The furnace having heating coils which provides required heat to melt the waste plastics by three phase electric supply. Due to the high temperature in furnace waste plastics have been melted and liquefied at 350°C and formed as a vapour at 450° C. Then these vapours were sent to condenser which cools from heated vapour into liquefied oil by cooling process with slow down temperature of 30°C to 35°C. Here the vapour is fully consisting of gaseous hydrocarbons property. These hydro carbons can be used as a bio fuel after the condensation. The fuel properties were tested in reputed laboratory testing centre.

2021 ◽  
Vol 291 ◽  
pp. 125857
Author(s):  
Xiaodong Jing ◽  
Junqian Dong ◽  
Hanlin Huang ◽  
Yanxi Deng ◽  
Hao Wen ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4374
Author(s):  
Waldemar Ścierski

The most advantageous way of managing plastics, according to circular economy assumptions, is recycling, i.e., reusing them. There are three types of plastics recycling: mechanical, chemical and energy recycling. The products of the pyrolysis process can be used for both chemical and energy recycling. Possibilities of further use of pyrolysis products depend on their physicochemical parameters. Getting to know these parameters was the aim of the research, some of which are presented in this article. The paper presents the research position for conducting the pyrolysis process and discusses the results of research on pyrolysis products of waste plastics. The process was conducted to obtain the temperature of 425 °C in the pyrolytic chamber. Such a value was chosen on the basis of my own previous research and literature analysis. The focus was on the migration of sulfur and nitrogen, as in some processes these substances may pose a certain problem. Studies have shown high possibilities of migration of these elements in products of pyrolysis process. It has been shown that the migration of sulfur is similar in the case of homogeneous and mixed waste plastics—it immobilizes mainly in pyrolytic oil. Different results were obtained for nitrogen. For homogeneous plastics, nitrogen immobilizes mainly in char and oil, whereas for mixed plastics, nitrogen immobilizes in pyrolytic gas.


2011 ◽  
Vol 15 (1) ◽  
pp. 145-158 ◽  
Author(s):  
Enzo Benanti ◽  
Cesare Freda ◽  
Vincenzo Lorefice ◽  
Giacobbe Braccio ◽  
Vinod Sharma

This work deals with the simulation of an olive pits fed rotary kiln pyrolysis plant installed in Southern Italy. The pyrolysis process was simulated by commercial software CHEMCAD. The main component of the plant, the pyrolyzer, was modelled by a Plug Flow Reactor in accordance to the kinetic laws. Products distribution and the temperature profile was calculated along reactor's axis. Simulation results have been found to fit well the experimental data of pyrolysis. Moreover, sensitivity analyses were executed to investigate the effect of biomass moisture on the pyrolysis process.


Author(s):  
D. Gowrishankar ◽  
G.D. Kumar ◽  
R. Prithviraj ◽  
V. Sanjay ◽  
D. Hariharan ◽  
...  

Plastics are an integral part of our lives and the production of plastics has drastically increased over the years, because of its vast range of applications and usage. Due to this the accumulation of waste plastics has also increased in time. The waste plastic generated in India is 15000 tons per day (as per survey). The breakdown of plastics requires around 500 years in the earth and these waste plastics affect the humans, animals, birds, earth and environment. The demand for conventional fuel has also increased lately and the quantity of this fuel reserve has decreased simultaneously. The extensive usage of the conventional fuels has paved the path for alternative ways for energy sources and alternate fuels. The extraction of waste plastic oil is obtained by the process of pyrolysis which is nothing but the thermochemical decomposition of organic matter without oxygen. The extracted plastic pyrolysis oil is then blended with diesel which helps in reducing the consumption of diesel fuel. Different blend ratios are prepared consisting of the extracted waste plastic pyrolysis oil and diesel fuel. These fuels are tested in the engine to understand the variation in the engine performance and emissions with the help of a gas analyser. By this way, the suitable blend ratio is selected for further works. This blend of fuel can exhibit high thermal efficiency and increases machine efficiency. The fuel does not emit sulphur dioxide (SO2) and the residue obtained is only 5 percent which is said to be carbon.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Airong Xu ◽  
Yongxin Wang ◽  
Xingmin Xu ◽  
Zhihong Xiao ◽  
Rukuan Liu

With the widespread use and increasing consumption of PET, the amount of waste PET is growing rapidly, and the accompanied environmental problems will become more and more serious. Therefore, the recycling and reuse of PET are of great significance for not only saving resources but also solving environmental issues. In this study, Methylcellulose (MC) composites reinforced with waste plastics polyethylene terephthalate (PET) were prepared by casting an MC/PET solution with a varying mass ratio of MC to PET. Systematic investigations were performed to reveal the effect of the MC/PET mass ratio on the mechanical property, chemical structure, and thermal properties. The resultant findings indicate that the addition of 3% waste plastics PET to MC could notably enhance the tensile strength by about 24% as compared with neat MC. Interestingly, the elongation of the MC/PET composite kept increasing with increasing waste plastics PET. At the same time, thermal compression treatment could also enhance the mechanical properties of the composite. Moreover, the composites also displayed higher thermal stability than MC. In addition, the crystallinity and morphology of the composite were estimated by XRD and SEM.


2011 ◽  
Vol 1317 ◽  
Author(s):  
Chuanwei Zhuo ◽  
Brendan Hall ◽  
Yiannis Levendis ◽  
Henning Richter

ABSTRACTCostly and often highly-flammable chemicals, such as hydrogen and carbon-containing gases, are largely used for carbon supply in current carbon nanotube (CNT) synthesis technologies. To mitigate related economic and safety concerns, we have developed a versatile CNT synthesis sequence, where low-cost and safe-to-handle-and-store waste solid polymers (plastics) are used for in situ generation of hydrogen and carbon-containing gases. Introduction of different waste plastics, such as polyethylene, polypropylene and polystyrene, into a multi-stage pyrolysis/ combustion/synthesis reactor allows for efficient CNT formation. This process is largely exothermic and scalable. It uses low-cost stainless steel screens to serve both as substrates as well as catalysts for CNT synthesis. This technique enables a solution for both waste plastic utilization and sustainable CNT production.


Sign in / Sign up

Export Citation Format

Share Document