Performance and Emission Characteristics of a Mixed Biodiesel Fueled CI Engine

2015 ◽  
Vol 766-767 ◽  
pp. 557-561
Author(s):  
S. Arunprasad ◽  
Thangavel Balusamy ◽  
S. Sivalakshmi

In this present paper, an attempt has been made to examine the performance and emission characteristics of a single cylinder diesel engine fueled with blends of mixed biodiesel (Thevetia peruviana, Neem, Jatropha, Pongamia). Experiments were conducted with various blends of mixed biodiesel in CI engine for different loads. The results show that lower brake thermal efficiency and higher brake specific fuel consumption were obtained with mixed biodiesel blends when compared with diesel. Lower the value of CO and HC and higher the value of CO2 emissions were determined for mixed biodiesel blends compared to that of diesel. Also, higher in NOx and lower smoke opacity were found compared to diesel.

In this present work, experiments were conducted on a VCR Diesel engine with diesel, Neem oil biodiesel and Di-ethyl ether mixed with neem oil biodiesel. The performance and emission characteristics were evaluated and compared. The study shown that the Brake thermal efficiency increased and the brake specific fuel consumption reduced with B10 blend of neem oil biodiesel compared to diesel. The emissions of CO, CO2 were reduced but HC and smoke were increased with the use of biodiesel than diesel. The addition of Diethyl Ether (DEE) further improved the performance and decreased the emissions of CO and CO2 of the engine at B20DEE20 blend compared to other blends of biodiesel and diesel.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


2011 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Wen Ming Cheng ◽  
Hui Xie ◽  
Gang Li

This paper discusses the brake specific fuel consumption and brake thermal efficiency of a diesel engine using cottonseed biodiesel blended with diesel fuel. A series of experiments were conducted for the various blends under varying load conditions at a speed of 1500 rpm and 2500 rpm and the results were compared with the neat diesel. From the results, it is found that the brake specific fuel consumption of cottonseed biodiesel is slightly higher than that of diesel fuel at different engine loads and speeds, with this increase being higher the higher the percentage of the biodiesel in the blend. And the brake thermal efficiency of cottonseed biodiesel is nearly similar to that of diesel fuel at different engine loads and speeds. From the investigation, it is concluded that cottonseed biodiesl can be directly used in diesel engines without any modifications, at least in small blending ratios.


2015 ◽  
Vol 162 (3) ◽  
pp. 13-18
Author(s):  
Gvidonas Labeckas ◽  
Irena Kanapkienė

The article presents experimental test results of a DI single-cylinder, air-cooled diesel engine FL 511 operating with the normal (class 2) diesel fuel (DF), rapeseed oil (RO) and its 10%, 20% and 30% (v/v) blends with aviation-turbine fuel JP-8 (NATO code F-34). The purpose of the research was to analyse the effects of using various rapeseed oil and jet fuel RO90, RO80 and RO70 blends on brake specific fuel consumption, brake thermal efficiency, emissions and smoke of the exhaust. The test results of engine operation with various rapeseed oil and jet fuel blends compared with the respective parameters obtained when operating with neat rapeseed oil and those a straight diesel develops at full (100%) engine load and maximum brake torque speed of 2000 rpm. The research results showed that jet fuel added to rapeseed oil allows to decrease the value of kinematic viscosity making such blends suitable for the diesel engines. Using of rapeseed oil and jet fuel blends proved themselves as an effective measure to maintain fuel-efficient performance of a DI diesel engine. The brake specific fuel consumption decreased by about 6.1% (313.4 g/kW·h) and brake thermal efficiency increase by nearly 1.0% (0.296) compared with the respective values a fully (100%) loaded engine fuelled with pure RO at the same test conditions. The maximum NOx emission was up to 13.7% higher, but the CO emissions and smoke opacity of the exhaust 50.0% and 3.4% lower, respectively, for the engine powered with biofuel blend RO70 compared with those values produced by the combustion of neat rapeseed oil at full (100%) engine load and speed of 2000 rpm.


Author(s):  
V. Hariram ◽  
J. Godwin John ◽  
Subramanyeswara Rao ◽  
S. K. Baji Babavali ◽  
S. Muni Lokesh ◽  
...  

This study focuses on the conversion of chicken fat into chicken fat methyl ester (CFME) and its use in the diesel engine. Baseline fuel i.e., diesel and chicken fat biodiesel are the fuels tested to study their effect on the performance and emission characteristics of diesel engines. To enhance the performance and emission characteristics, ethanol up to 20% is added as an additive to the chicken fat biodiesel. The physiochemical properties revealed that the fuel blends properties are closer to the diesel fuel. The experimental investigations revealed that additive blended biodiesel enhanced the performance by reducing the brake-specific fuel consumption and increasing the brake thermal efficiency. Moreover, the emissions are considerably reduced by the additive blended chicken fat biodiesel. Therefore, chicken fat biodiesel can be considered as a substitute fuel to be used in the diesel engine without any modifications.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
K. Venkatesan

Abstract This article examines the prospects of using toluene added cashew nut shell pyro oil–diesel blends as alternative fuels in CI engine. Effects of adding fixed proportion (by vol.) of toluene (TU) to various cashew nut shell pyro oil (CPO)–diesel (D) blends on the performance and exhaust emission characteristics of a direct injection, single cylinder, water cooled, naturally-aspirated, constant speed run, 4-stroke CI engine were investigated under varied brake power conditions. Tested fuels were neat diesel, CPOT5 (5% CPO + 5% TU + 90% D), CPOT10 (10% CPO + 5% TU + 85% D) and CPOT15 (15% CPO + 5% TU + 80% D). CPO was extracted through a lab-scale fast pyrolysis apparatus. Fuel samples were prepared and characterized according to ASTM standards. Owing to the features like low sensitivity, impressive anti pinging, etc., presence of toluene in an optimal CPO-diesel blend was expected to promote the engine characteristics. Set of experiments were conducted for each fuel mixture and the respective in-cylinder pressure, fuel consumption, exhaust emission levels, temperatures were recorded. At the rated power output condition, CPOT5 fuel had shown 1.67% increased brake thermal efficiency, 5% reduced brake specific fuel consumption, almost 3% reduced exhaust gas temperatures as well as reduced the exhaust emissions such as HC (from 91 to 87 ppm), CO (from 0.1 to 0.08%), NOx (from 458 to 426 ppm), smoke levels (from 72 to 69 BSN). CPOT5 showed improved combustion characteristics like reduced ignition delays and combustion durations, increased rates of cylinder pressure rise and heat release. However, overall attained improvements in the engine parameters were found to be not up to the mark which makes the chances of using CPOT5 as best alternative to diesel feeble. Article highlights The Cashew nut shells agro-waste is efficiently converted into an alternative fuel. Effect of adding toluene to pyro oil – diesel blends in CI engine is examined. Engine performance is improved marginally with 1.6% higher brake thermal efficiency (BTE) and 5% lower brake specific fuel consumption (BSFC). Reductions in CO, HC, NOx and smoke emissions are observed. Reduced Ignition delay and combustion durations, increased rate of pressure rise, and increased HRR are observed.


In present days industries are growing at a rapid rate and so as the usage of the diesel. The fossil fuels are limited in nature, the increased usage of diesel is resulting in the depletion of its reserves this gives rise to the need of alternative fuels. Due to low specific fuel consumption and supreme power efficiency it has vast applications compared to other fuels but NOX and smoke has seriously causing problem to environment. For this the Palmyra oil has same properties of diesel with varying compression ratios effects the performance and emission characteristics are evaluated. In this process step wise increase of CRs from 16 initially .Then increases EGRs of 0%,5% and 10% and studied performance and emission characteristics. There is improvement in engine efficiency during EGR increment and at low load .There is simultanesly decrease in NOX emissions . The single cylinder four stroke variable compression performance and emissions can be varied.. when fuel is pure diesel,b15and b35 of Palmyra oil is examined and bear with standard automobile usable diesel was conducted at compression ratio of 16:1 at the degrees of 19 and 23 degrees. The influence of Palmyra oil like compression ratio on fuel consumption ,brake thermal efficiency and exhaust gas emissions like NOx and hc has been investigated .the overall optimum is found to be b15 biodiesel –diesel blended for compression ratio of 16 at different exhaust gas recirculation such as 0, 5 and 10. The same experimentation is done for other blends B15 and B35 with palmyra oil. All the values are compared with each other. The configuration which achieved highest Break thermal efficiency is compared to the common diesel engine configuration used and the advantages and the disadvantages are listed out


The diesel fuel is most extensively used fossil fuel in automotives and a single major source of hazardous environment pollutant across the globe. As of late, the exploration thinks about distinguished that plant based biodiesel are turning into a promising option sustainable fuel and the consumable/non-eatable oils and creature fats can be utilized feed-stock in arrangement of biodiesel, in light of the fact that its chemical properties practically like fossil diesel fuel, non-poisonous, clean consuming and inexhaustible source. In this work, the performance analysis and emission characteristics of single cylinder, 4-stroke, and water cooled diesel engine was carried-out using Palm oil methyl ester as biodiesel alternative to diesel fuel. Experimental tests have been conducted with range of engine loads using palm oil methyl ester (PME) and its diesel blends with biodiesel in the ratio of 10:90 (B10), 20:80 (B20), and 30:70 (B30), 40:60 (B40), PME 100% (B100) and petro-diesel 100% by volume with and without antimony tin oxide (ATO) additive. In this research work brake power (BP), brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), fuel consumption (FC) are considered as engine performance characteristics and carbon monox ide (CO), hydro carbons (HC), oxides of nitrogen (NOx) are considered as emission characteristics. The experimental results revealed that B10 blend of biodiesel has comparable brake thermal efficiency as diesel. B10 has lowest and B100 has highest BSFC, FC among all the biodiesel blends and biodiesel has lower CO emission, lower HC emission and moderately higher NOx emission when compared with diesel. B10 has shown comparable performance as diesel and it can be considered as alternative to diesel fuel.


Work has been carried out using four stroke single cylinder diesel engine with retrofit attached with fuel injector and at optimum injection pressure 210 bar and 230 BTDC. The main purpose of using retrofit is to achieve HCCI (Homogeneous charge compression ignition) with which emissions can be reduced. Four Variants of retrofits were used and with V-cut type retrofit it was found that there is reduction in toxic emission like CO and NO but there was slight increase in HC emission when compared with normal fuel injector. Engine performance was compared with normal injector and injector with V-cut and it was found that Break thermal efficiency was increased by 0.25% at full load and 1.53% at 80% load and specific fuel consumption decreased by 0.01%.


RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 91069-91081 ◽  
Author(s):  
Mandeep Singh ◽  
Sarbjot Singh Sandhu

In this study, the performance and emission characteristics of diesel engine fueled with diesel/Argemone biodiesel blends have been evaluated.


Sign in / Sign up

Export Citation Format

Share Document