A Review on Abrasive Jet Machining Process Parameters

2015 ◽  
Vol 766-767 ◽  
pp. 629-634 ◽  
Author(s):  
S. Madhu ◽  
M. Balasubramanian

Abrasive jet machining (AJM) also known as abrasive micro-blasting or Pencil blasting is an abrasive blasting machining process that uses abrasives propelled by high velocity gas to erode material from the work piece. It has been applied to rough working such as deburring and rough finishing, machining of ceramics and electronic devices. AJM has become a useful technique for micro machining. It has various distinct advantages over the other non-traditional cutting methods, which are high machining versatility, minimum stresses on the substrate. This paper deals with several experiments that have been conducted by many researchers to assess the influence of abrasive jet machining (AJM) process parameters such as type of abrasive Particle , Abrasive Particle size, Jet pressure Nozzle tip distance. Various experiments were conducted to assess the influence of abrasive jet machine.

2010 ◽  
Vol 443 ◽  
pp. 645-651 ◽  
Author(s):  
Alireza Moridi ◽  
Jun Wang ◽  
Yasser M. Ali ◽  
Philip Mathew ◽  
Xiao Ping Li

Owing to its various distinct advantages over the other machining technologies, abrasive jet machining has become a promising machining technology for brittle and hard-to-machine materials. An experimental study is presented on the micro-grooving of quartz crystals using an abrasive airjet. The effect of the various process parameters on the major machining performance measures are analysed to provide a deep understanding of this micro-machining process. Predictive models are then developed for quantitatively estimating the machining performance. The models are finally verified by an experiment. It shows that the model predictions are in good agreement with the experimental results under the corresponding conditions.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774843 ◽  
Author(s):  
Ahmed Nassef ◽  
Ahmed Elkaseer ◽  
El Shimaa Abdelnasser ◽  
Mohamed Negm ◽  
Jaber Abu Qudeiri

This article reports an investigation of the influence of process parameters on the obtainable dimensional accuracy when drilling glass using abrasive jet machining. In particular, holes were drilled out of glass sheets, and the effects of standoff distance, nozzle diameter, particle grain size and applied pressure on the kerf taper were examined. An artificial neural network technique was used to establish a precise model of kerf taper as a function of the process parameters. The proposed model was then optimised, and the conditions to minimise the kerf taper were identified using a genetic algorithm. The results revealed that standoff distance has a major effect on kerf taper, and it proved possible to substantially reduce the kerf taper by applying an axial feed to the nozzle so that the standoff distance is kept constant during the machining process.


Abrasive Jet Machining (AJM) is a promising unconventional modern machining process used to machine hard and brittle materials. This paper focuses on machining of borosilicate-glass work piece with various grits of zircon abrasives using normal and fluidised bed mixing chamber based AJM setups.The normal AJM setup is first designed and fabricated to conduct the experiments according to the Box-Behnken design of response surface methodology. Again, some modifications are made in the existing normal mixed chamber to fabricate the fluidized bed mixing chamber based AJM setup and experiments are carried out with the same input parameters on both the AJM setups. The SEM micrograph analysis is performed to study the impact-mechanism and crack-propagation due to AJM.


Author(s):  
Ping-Hsun Lee ◽  
Jen-Yuan (James) Chang

Abstract In this study we proposed a finishing tool where a slurry composited of magnetorheological (MR) fluid and abrasive particle was utilized as the polishing medium such that the rheological property and corresponding abrasive property could be controlled by changing the magnetic field. The MR abrasive fluid is magnetized by a permanent magnet. With a design of a steel C-shape structure (C-Structure) the magnetic field generated by the magnet can be directed to the tool tip. With a movable slider as a gate of the C-Structure the magnetic field directed to the tip can be adjusted continuously. The slurry was supplied from the tail and reached the tip through a fluid channel in the center of the tool. While the tool rotates with its tip near a workpiece filled with the magnetized slurry, the finishing machining process can be achieved. The usage of this finishing tool was designed to be similar as a conventional milling cutter’s tool allowing for handling surfaces of complex 3D geometries.


2019 ◽  
Vol 1 (1) ◽  
pp. 49-55
Author(s):  
Mahesh Reddy Vaddhi ◽  
M. Leela Ramesh ◽  
B Malsoor ◽  
Sai Teja

Abrasive Jet Machining (AJM) is the process of material removal from a work piece by the application of a high speed stream of abrasive particles carried in a gas medium from a nozzle. The material removal process is mainly by erosion. The AJM can principally be wont to cut shapes in arduous and brittle materials like glass, ceramics etc. In this concept, a model of the Abrasive Jet Machine is proposed to design by taking into consideration of commercially available components. Care will be taken to use less fabricated components rather than directly procuring them, because, the lack of accuracy in fabricated components would lead to a diminished performance of the machine. To analyse its performance, Drilling of glass sheets with different abrasives and different nozzles will be carried out by Abrasive Jet Machining process (AJM) in order to determine its machinability.


2014 ◽  
Vol 592-594 ◽  
pp. 511-515
Author(s):  
Neeraj Sharma ◽  
Neeraj Ahuja ◽  
Sorabh Gupta ◽  
Ajit Singh ◽  
Renu Sharma

Wire Electric Discharge machine is non-conventional thermo-electric spark erosion machining process to cut conductive metal and alloys. The main mechanism of machining is spark erosion between the tool and work-piece. High carbon high chromium tool steel (D-2) is a hard alloy with high hardness and wear resisting property. The purpose of this study is to investigate the effect of process parameters on the machining of D-2 tool steel. D-2 tool steel used in tool and die industries. Response Surface Methodology (RSM) is used to formulate a mathematical model which correlates the independent process parameters with the desired dimensional deviation. The central composite rotatable design has been used to conduct the experiments. Genetic algorithm is used to predict the best individual parameters along with the predicted fitness values.


2014 ◽  
Vol 592-594 ◽  
pp. 854-858
Author(s):  
N.S. Pawar ◽  
R.R. Lakhe ◽  
R.L. Shrivastava

According to the most of the studies dealing with micro grooving, cutting, leading to lower material removal Abrasive jet machining is traditional process. Invention was made to create those needs. A number of investigation or researches were carried out by imminent personality but no detailed information and design has provided about cylindrical vibrating chamber or mixing chamber. This change in shape gives better velocity to abrasive particles and non sticking characteristic gives the better effect of erosion of material on work piece and scattering of particle towards objects. The parameter stand off distance, variable pressure, material removal rate used for this experimental study has also moderate. The work carried out with Alumina nozzle. The abrasive powder feed rate is controlled by the amplitude of mixing chamber. The root mean square value is 0.988 in linear regression model. The estimated standard error is 0.00115 which is very less. The performance of sand gives the similar better model result as given by traditional using different parameter. The taper of cut is higher with this mixing particle and better feed rate.


2011 ◽  
Vol 411 ◽  
pp. 398-402 ◽  
Author(s):  
Xiao Bing Gao ◽  
Yan Xue ◽  
Fu Jia Wu

CNC milling process parameters is the key issue to improve quality and productivity of product and save cost. Especially, in the end milling of the pockets, the radial depth and real feed vary as the end mill moves along the corner. This will result in the unstable of the cutting force and the bad accuracy of the milled pockets. In this paper, according to analysis of CNC machining process, the model of dynamic cutting force based on knowledge in the end milling of the pockets is established, which is predicted by the model of cutting force coefficient. The optimization milling parameters can be calculated in terms of the model of dynamic cutting force in the pockets, work piece material properties. In the end, the experiment proves the process of optimization.


2012 ◽  
Vol 622-623 ◽  
pp. 590-594 ◽  
Author(s):  
P. Sivaprakasam ◽  
P. Hariharen ◽  
S. Kathikheyen ◽  
S. Balusamy

Micro Electrical discharge machining (µEDM) is an electro thermal process, the cutting force is negligibly small and material removal occurs irrespective of hardness of work piece material .Micro electrical discharge machining process is capable of machining of complex shape, which is difficult to machine in conventional machining process. Last decade, the EDM process involved demand for machining requirements with short period. Since the major risk of wire breakage, deflections of electrodes were affecting the performance accuracy of EDM operation. This paper describe about a comprehensive review of micro electro discharge machining process and its process optimization techniques used for last 10 years. Micro electro discharge machining has more important given to difficult to machine materials. In order to improve the surface integrity and performance of process, need to select proper process parameters. It reports on the Micro EDM research involving the optimization of the process parameters surveying the influence of the various factors affecting the machining performance and productivity.


Sign in / Sign up

Export Citation Format

Share Document