Modeling and Parametric Investigation of WEDM for D-2 Tool Steel Using RSM and GA

2014 ◽  
Vol 592-594 ◽  
pp. 511-515
Author(s):  
Neeraj Sharma ◽  
Neeraj Ahuja ◽  
Sorabh Gupta ◽  
Ajit Singh ◽  
Renu Sharma

Wire Electric Discharge machine is non-conventional thermo-electric spark erosion machining process to cut conductive metal and alloys. The main mechanism of machining is spark erosion between the tool and work-piece. High carbon high chromium tool steel (D-2) is a hard alloy with high hardness and wear resisting property. The purpose of this study is to investigate the effect of process parameters on the machining of D-2 tool steel. D-2 tool steel used in tool and die industries. Response Surface Methodology (RSM) is used to formulate a mathematical model which correlates the independent process parameters with the desired dimensional deviation. The central composite rotatable design has been used to conduct the experiments. Genetic algorithm is used to predict the best individual parameters along with the predicted fitness values.

2021 ◽  
Author(s):  
Denis R Salikhyanov ◽  
Ivan Kamantsev

Abstract The present work is devoted to the study of deformability of high-strength and hard-to-deform materials. Today the most promising technology for their forming is a rolling in a ductile shell also known as sandwich rolling. Despite the fact that the use of such technological shells allows to effectively reduce the rolling forces and soften the stress state, they have not got wide application in manufacturing practice due to the accompanying disadvantages. On the basis of finite element (FE) simulation, we carried out an all-around analysis of the effect of shell material on process parameters of method: rolling force, total reduction of hard-to-deform material, deformation inhomogeneity and thickness variation of rolled sheet, stress state scheme. Analysis of computer models allowed us to highlight the main reason for the low efficiency of the known method and propose a new design of technological shells. Preliminary FE-simulation of the rolling process of hard-to-deform material in the new technological shells showed an improvement in process parameters and method efficiency. Approbation was carried out via rolling U12 high-carbon tool steel (Russian analogue of DIN C110W2 tool steel), which has low plasticity and high hardness, on the rolling mill Duo 250 under laboratory conditions. Evaluation according to technological criteria – reducing the rolling force, increase of the total reduction and the deformation uniformity of hard-to-deform material, improvement of its deformability – showed the prospects of using proposed technological shells in manufacturing practice.


2018 ◽  
Vol 28 ◽  
pp. 55-66 ◽  
Author(s):  
Kuldeep Singh ◽  
Khushdeep Goyal ◽  
Deepak Kumar Goyal

In research work variation of cutting performance with pulse on time, pulse off time, wire type, and peak current were experimentally investigated in wire electric discharge machining (WEDM) process. Soft brass wire and zinc coated diffused wire with 0.25 mm diameter and Die tool steel H-13 with 155 mm× 70 mm×14 mm dimensions were used as tool and work materials in the experiments. Surface roughness and material removal rate (MRR) were considered as performance output in this study. Taguchi method was used for designing the experiments and optimal combination of WEDM parameters for proper machining of Die tool steel (H-13) to achieve better surface finish and material removal rate. In addition the most significant cutting parameter is determined by using analysis of variance (ANOVA). Keywords Machining, Process Parameters, Material removal rate, Surface roughness, Taguchi method


2011 ◽  
Vol 411 ◽  
pp. 398-402 ◽  
Author(s):  
Xiao Bing Gao ◽  
Yan Xue ◽  
Fu Jia Wu

CNC milling process parameters is the key issue to improve quality and productivity of product and save cost. Especially, in the end milling of the pockets, the radial depth and real feed vary as the end mill moves along the corner. This will result in the unstable of the cutting force and the bad accuracy of the milled pockets. In this paper, according to analysis of CNC machining process, the model of dynamic cutting force based on knowledge in the end milling of the pockets is established, which is predicted by the model of cutting force coefficient. The optimization milling parameters can be calculated in terms of the model of dynamic cutting force in the pockets, work piece material properties. In the end, the experiment proves the process of optimization.


2012 ◽  
Vol 622-623 ◽  
pp. 590-594 ◽  
Author(s):  
P. Sivaprakasam ◽  
P. Hariharen ◽  
S. Kathikheyen ◽  
S. Balusamy

Micro Electrical discharge machining (µEDM) is an electro thermal process, the cutting force is negligibly small and material removal occurs irrespective of hardness of work piece material .Micro electrical discharge machining process is capable of machining of complex shape, which is difficult to machine in conventional machining process. Last decade, the EDM process involved demand for machining requirements with short period. Since the major risk of wire breakage, deflections of electrodes were affecting the performance accuracy of EDM operation. This paper describe about a comprehensive review of micro electro discharge machining process and its process optimization techniques used for last 10 years. Micro electro discharge machining has more important given to difficult to machine materials. In order to improve the surface integrity and performance of process, need to select proper process parameters. It reports on the Micro EDM research involving the optimization of the process parameters surveying the influence of the various factors affecting the machining performance and productivity.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1901
Author(s):  
Alena Michalcová ◽  
Vojtěch Pečinka ◽  
Zdeněk Kačenka ◽  
Jan Šerák ◽  
Jiří Kubásek ◽  
...  

High speed tool steels are materials that exhibit superior mechanical properties (e.g., high hardness). They should also be resistant to thermal exposure to maintain high hardness during the machining process. In this paper, a C-free tool steel formed of Fe matrix and a Mo6Co7 intermetallic phase was studied. This steel was compared to the well-known Vanadis 60 steel containing Fe matrix and carbides. Microstructures were investigated by scanning (SEM) and transmission (TEM) electron microscopy, and the mechanical properties and thermal stability of both materials were compared. It was proven that the strengthening in the Vanadis 60 steel was mainly caused by the carbides, while the C-free steel was strengthened by the Mo6Co7 phase. The hardness values of both materials were comparable in the utilization state (approx. 950 HV). The hardness of Vanadis 60 steel decreased after several minutes of annealing at 650 °C under the value that enables material utilization. The hardness value of the steel strengthened by the intermetallics also decreased but significantly slower. Based on these results, the main finding of this study is that the C-free steel exhibited much better thermal stability and may be utilized at higher temperatures for longer periods of time than Vanadis 60.


Electrical discharge machining (EDM) is one of the oldest nontraditional machining processes, commonly used in automotive, aerospace and ship building industries for machining metals that have high hardness, strength and to make complicated shapes that cannot be produced by traditional machining techniques. The process is based on the thermoelectric energy between the work piece and an electrode. EDM is slow compared to conventional machining, low material removal rate, high surface roughness, high tool wear and formation of recast layer are the main disadvantages of the process. Tool wear rate, material removal rate and surface quality are important performance measures in electric discharge machining process. Numbers of ways are explored by researchers for improving and optimizing the output responses of EDM process. The paper summarizes the research on die-sinking EDM relating to the improvements in the output response.


2015 ◽  
Vol 766-767 ◽  
pp. 629-634 ◽  
Author(s):  
S. Madhu ◽  
M. Balasubramanian

Abrasive jet machining (AJM) also known as abrasive micro-blasting or Pencil blasting is an abrasive blasting machining process that uses abrasives propelled by high velocity gas to erode material from the work piece. It has been applied to rough working such as deburring and rough finishing, machining of ceramics and electronic devices. AJM has become a useful technique for micro machining. It has various distinct advantages over the other non-traditional cutting methods, which are high machining versatility, minimum stresses on the substrate. This paper deals with several experiments that have been conducted by many researchers to assess the influence of abrasive jet machining (AJM) process parameters such as type of abrasive Particle , Abrasive Particle size, Jet pressure Nozzle tip distance. Various experiments were conducted to assess the influence of abrasive jet machine.


2017 ◽  
Vol 61 (4) ◽  
pp. 255 ◽  
Author(s):  
Sunny Diyaley ◽  
Pramod Shilal ◽  
Ishwer Shivakoti ◽  
Ranjan Kumar Ghadai ◽  
Kanak Kalita

Wire electric discharge machining (WEDM) is a nontraditional machining process for machining conductive materials with complex and intricate shapes with a high surface finish and dimensional accuracy. The decision making for the selection of the best set of combinations of input process parameters is a major challenge. Therefore a proper optimization tool should be used for the optimal selection of process parameters. The resent work deals with the comparative study of Preferential Selection Index (PSI) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for the selection of process parameters during machining of EN31 tool steel. Four input parameters- Pulse on Time (Ton ), Pulse off Time (Toff  ), Servo Voltage (SV) and the Wire tension (WT) are considered. Surface roughness and material removal rate are the measured output responses. Taguchi L9 orthogonal array is used for developing the experimental design. Three levels of each control factor are considered. The results show that a single parameter alone does not have a significant influence on the output responses. Thequality of the output responses depends on the combination of the various set of input parameters. The best set of combination suggested from the current input parameters for machining of EN31 Tool Steel by Wire EDM Process is found to be Pulse on Time (Ton )= 15μs, Pulse Off Time (Toff  )=35μs, Servo Voltage (SV)=40V and the Wire tension (WT)=5kgf from both PSI as well as TOPSIS techniques. Confirmation experiments are performed to validate the optimal results.


Sign in / Sign up

Export Citation Format

Share Document