scholarly journals Natural Produce Classification Using Computer Vision Based on Statistical Color Features and Derivative of Radius Function

2015 ◽  
Vol 771 ◽  
pp. 242-247 ◽  
Author(s):  
Anton Satrio Prabuwono ◽  
Joko Siswantoro ◽  
Azizi Abdullah

In agriculture industry, natural produce classification is used in sorting, grading, measuring, and pricing. Currently, a lot of methods have been developed using computer vision to replace human expert in natural produce classification. However, some of the method used long features descriptor and complex classifier to obtain high classification rate. This paper proposes natural produce classification method using computer vision based on simple statistical color features and derivative of radius function. The k-nearest neighbors (k-NN) and artificial neural network (ANN) were used to classify the produce based on the extracted features. Preliminary experiment results show that the proposed method achieved best result with average classification accuracy of 99.875% using ANN classifier with nine nodes in hidden layer.

2020 ◽  
Vol 9 (1) ◽  
pp. 118
Author(s):  
Ali Dabaghi ◽  
Mohammad Hadi Khoshtaghaza ◽  
Mohamad Reza Alizadeh ◽  
Hemad Zareiforoush

In this study, the appearance quality of Hashemi variety of rice grains was evaluated using image processing and artificial neural network (ANN) classifier. Non-touching kernel images of different classes in a Hashemi rice sample were acquired using a flatbed scanner. Then preprocessing, segmentation, feature extraction and effective feature selection process were done on each objects of image. To categorized grains, various structures of ANN consisting network with one and two hidden layer with different hidden nodes, different training and transfer functions were considered. Results of validation stage showed ANN with 13-18-18-5 topology and LM training and tansig transfer functions had highest mean of classification accuracy (97.33%) and the lowest value of RMSE (0.08361). It’s concluded that the suggested method uses low cost equipment to identify quality of rice with acceptable accuracy. Results of this research can be used for fast and accurate grading and developing an efficient rice sorting system.  


Author(s):  
Monika Arora ◽  
Parthasarathi Mangipudi

Nitrosamine is a carcinogenic chemical used as a preservative in red meat whose identification is an ordeal. This paper presents a computer vision-based non-destructive method for identifying quality disparities between preservative treated and untreated (control) red meat. To access the discrepancy in the quality of red meat, both traditional machine learning and deep learning-based methods have been used. Support vector machine (SVM) classifier and artificial neural network (ANN) models have been used to detect the presence of nitrosamine in test samples. The paper also made use of different pre-trained deep convolutional neural networks (DCNN) with transfer learning approach such as ResNet-34, ResNet-50, ResNet-101, VGG-16, VGG-19, AlexNet and MobileNetv2 to examine the presence of nitrosamine in the food samples. While the ANN classifier performed better in comparison to the SVM classifier, the highest testing accuracy and F1-score were obtained using the deep learning model, ResNet-101 with 95.45% and 96.54%, respectively. The experimental results demonstrate an improved performance in comparison to the existing methods; indicating the feasibility of the proposed work for food quality control in real-time applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
O. Nait Mensour ◽  
S. Bouaddi ◽  
B. Abnay ◽  
B. Hlimi ◽  
A. Ihlal

Solar radiation data play an important role in solar energy research. However, in regions where the meteorological stations providing these data are unavailable, strong mapping and estimation models are needed. For this reason, we have developed a model based on artificial neural network (ANN) with a multilayer perceptron (MLP) technique to estimate the monthly average global solar irradiation of the Souss-Massa area (located in the southwest of Morocco). In this study, we have used a large database provided by NASA geosatellite database during the period from 1996 to 2005. After testing several models, we concluded that the best model has 25 nodes in the hidden layer and results in a minimum root mean square error (RMSE) equal to 0.234. Furthermore, almost a perfect correlation coefficient R=0.988 was found between measured and estimated values. This developed model was used to map the monthly solar energy potential of the Souss-Massa area during a year as estimated by the ANN and designed with the Kriging interpolation technique. By comparing the annual average solar irradiation between three selected sites in Souss-Massa, as estimated by our model, and six European locations where large solar PV plants are deployed, it is apparent that the Souss-Massa area is blessed with higher solar potential.


2022 ◽  
Vol 14 (2) ◽  
pp. 274
Author(s):  
Mohamed Marzhar Anuar ◽  
Alfian Abdul Halin ◽  
Thinagaran Perumal ◽  
Bahareh Kalantar

In recent years complex food security issues caused by climatic changes, limitations in human labour, and increasing production costs require a strategic approach in addressing problems. The emergence of artificial intelligence due to the capability of recent advances in computing architectures could become a new alternative to existing solutions. Deep learning algorithms in computer vision for image classification and object detection can facilitate the agriculture industry, especially in paddy cultivation, to alleviate human efforts in laborious, burdensome, and repetitive tasks. Optimal planting density is a crucial factor for paddy cultivation as it will influence the quality and quantity of production. There have been several studies involving planting density using computer vision and remote sensing approaches. While most of the studies have shown promising results, they have disadvantages and show room for improvement. One of the disadvantages is that the studies aim to detect and count all the paddy seedlings to determine planting density. The defective paddy seedlings’ locations are not pointed out to help farmers during the sowing process. In this work we aimed to explore several deep convolutional neural networks (DCNN) models to determine which one performs the best for defective paddy seedling detection using aerial imagery. Thus, we evaluated the accuracy, robustness, and inference latency of one- and two-stage pretrained object detectors combined with state-of-the-art feature extractors such as EfficientNet, ResNet50, and MobilenetV2 as a backbone. We also investigated the effect of transfer learning with fine-tuning on the performance of the aforementioned pretrained models. Experimental results showed that our proposed methods were capable of detecting the defective paddy rice seedlings with the highest precision and an F1-Score of 0.83 and 0.77, respectively, using a one-stage pretrained object detector called EfficientDet-D1 EficientNet.


2020 ◽  
Vol 8 (6) ◽  
pp. 5820-5825

Human computer interaction is a fast growing area of research where in the physiological signals are used to identify human emotion states. Identifying emotion states can be done using various approaches. One such approach which gained interest of research is through physiological signals using EEG. In the present work, a novel approach is proposed to elicit emotion states using 3-D Video-audio stimuli. Around 66 subjects were involved during data acquisition using 32 channel Enobio device. FIR filter is used to preprocess the acquired raw EEG signals. The desired frequency bands like alpha, delta, beta and theta are extracted using 8-level DWT. The statistical features, Hurst exponential, entropy, power, energy, differential entropy of each bands are computed. Artificial Neural network is implemented using Sequential Keras model and applied on the extracted features to classify in to four classes (HVLA, HVHA, LVHA and LVLA) and eight discrete emotion states like clam, relax, happy, joy, sad, fear, tensed and bored. The performance of ANN classifier found to perform better for 4- classes than 8-classes with a classification rate of 90.835% and 74.0446% respectively. The proposed model achieved better performance rate in detecting discrete emotion states. This model can be used to build applications on health like stress / depression detection and on entertainment to build emotional DJ.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2021 ◽  
Vol 12 (3) ◽  
pp. 35-43
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) has been the leading cause of death worldwide over the past 10 years. Researchers have been using several data mining techniques to help healthcare professionals diagnose heart disease. The neural network (NN) can provide an excellent solution to identify and classify different diseases. The artificial neural network (ANN) methods play an essential role in recognizes diseases in the CAD. The authors proposed multilayer perceptron neural network (MLPNN) among one hidden layer neuron (MLP) and four hidden layers neurons (P-MLP)-based highly accurate artificial neural network (ANN) method for the classification of the CAD dataset. Therefore, the ten-fold cross-validation (T-FCV) method, P-MLP algorithms, and base classifiers of MLP were employed. The P-MLP algorithm yielded very high accuracy (86.47% in CAD-56 and 98.35% in CAD-59 datasets) and F1-Score (90.36% in CAD-56 and 98.83% in CAD-59 datasets) rates, which have not been reported simultaneously in the MLP.


Author(s):  
Jagan Jayabalan ◽  
Sanjiban Sekhar Roy ◽  
Pijush Samui ◽  
Pradeep Kurup

Elastic Modulus (Ej) of jointed rock mass is a key parameter for deformation analysis of rock mass. This chapter adopts three intelligent models {Extreme Learning Machine (ELM), Minimax Probability Machine Regression (MPMR) and Generalized Regression Neural Network (GRNN)} for determination of Ej of jointed rock mass. MPMR is derived in a probability framework. ELM is the modified version of Single Hidden Layer Feed forward network. GRNN approximates any arbitrary function between the input and output variables. Joint frequency (Jn), joint inclination parameter (n), joint roughness parameter (r), confining pressure (s3) (MPa), and elastic modulus (Ei) (GPa) of intact rock have been taken as inputs of the ELM, GRNN and MPMR models. The output of ELM, GRNN and MPMR is Ej of jointed rock mass. In this study, ELM, GRNN and MPMR have been used as regression techniques. The developed GRNN, ELM and MPMR have been compared with the Artificial Neural Network (ANN) models.


Author(s):  
Tamer Emara

The IEEE 802.16 system offers power-saving class type II as a power-saving algorithm for real-time services such as voice over internet protocol (VoIP) service. However, it doesn't take into account the silent periods of VoIP conversation. This chapter proposes a power conservation algorithm based on artificial neural network (ANN-VPSM) that can be applied to VoIP service over WiMAX systems. Artificial intelligent model using feed forward neural network with a single hidden layer has been developed to predict the mutual silent period that used to determine the sleep period for power saving class mode in IEEE 802.16. From the implication of the findings, ANN-VPSM reduces the power consumption during VoIP calls with respect to the quality of services (QoS). Experimental results depict the significant advantages of ANN-VPSM in terms of power saving and quality-of-service (QoS). It shows the power consumed in the mobile station can be reduced up to 3.7% with respect to VoIP quality.


Sign in / Sign up

Export Citation Format

Share Document