Investigation of Mesh Dependency of Materials Fracture in the Finite Element Simulation of a Projectile Penetrating into a Target

2015 ◽  
Vol 782 ◽  
pp. 302-308
Author(s):  
Jin Tao Liu ◽  
Qun Bo Fan ◽  
Hong Nian Cai ◽  
Guo Ju Li

In finite element numerical simulation, the calculating results of geometrical models with different mesh density tend to have obvious differences, especially when material damage and fracture are considered. In order to study the mesh dependency of the finite element calculation, models of a projectile penetrating into the target with different mesh densities are constructed by using LS-DYNA. A nonlocal approach is investigated and the results without and with MAT_NONLOCAL are compared. It is found that the nonlocal model with a variable characteristic length parameter provides a relatively accurate and stable result, and the calculation cost can be reduced.

2016 ◽  
Vol 7 (1) ◽  
pp. 7-12 ◽  
Author(s):  
D. Huri

Non-linear finite element calculations are indispensable when important information of the material response under load of a rubber component is desired. Although the material characterization of a rubber component is a demanding engineering task, the changing contact range between the parts and the incompressibility behaviour of the rubber further increase the complexity of the investigations. In this paper the effects of the choice of the numerical material parameters (e.g. bulk modulus) are examined with regard to numerical stability, mesh density and calculation accuracy. As an example, a rubber spring is chosen where contact problem is also handled.


2011 ◽  
Vol 467-469 ◽  
pp. 1686-1690
Author(s):  
Zhi Feng Liu ◽  
Zhong Hua Chu ◽  
Qiang Cheng ◽  
Guang Bo Liu ◽  
Dong Sheng Xuan

This paper integrates experiment modal analysis and the analytical modal analysis to study on the vibration phenomena occurring occasionally at the different components of a precise horizontal machining centre. The paper is focused on extracting the mode shape of the major components of the machine in order to ensure resonance phenomena as a cause of vibration. At first the main natural frequencies with the corresponding modes of vibration of the machine structure are obtained by the experiment modal analysis. Then the dynamic behavior of the machine components is simulated using a finite element simulation model. The comparison of the results based on finite element calculation with their experimental counterparts shows the reasonableness. The model is evaluated and corrected with experimental results by modal testing of the machine components.


2004 ◽  
Vol 15 (10) ◽  
pp. 1387-1395 ◽  
Author(s):  
M. TAJMAR

A 3D finite element numerical simulation was developed to investigate Casimir forces in arbitrary geometries. The code was verified comparing it with results obtained from analytical equations. Appling the simulation to previously not assessed configurations, new Casimir properties were found such as repulsive Casimir forces in groove like structures.


2014 ◽  
Vol 1033-1034 ◽  
pp. 462-465
Author(s):  
Yong Huang ◽  
De Jun Ma ◽  
W. Chen ◽  
Jia Liang Wang ◽  
Liang Sun

Based on the finite element analysis method to simulate the O-P hardness. Taking S45C steel as an example, comparative analysis of O-P hardness of finite element simulation and O-P hardness of instrument indentation hardness experiment, results show that difference of S45C steel’s O-P hardness between the finite element simulation and real experiment is-2.62% Accordingly seen, O-P hardness can be obtained by finite element numerical simulation method, it’s a possible way to study relations between O-P hardness and Vickers hardness based on finite element numerical simulation techniques.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


Sign in / Sign up

Export Citation Format

Share Document