Effect of Plastic Deformation of the Initial Components and Particle Size Reduction on the Structure and Properties of the PN85YU15-Ni Composite Material Produced by Spark Plasma Sintering

2015 ◽  
Vol 788 ◽  
pp. 151-156 ◽  
Author(s):  
Lilia Shevtsova ◽  
Tatyana Sameyshcheva ◽  
Dmitry Terentyev ◽  
Iuliia Malyutina ◽  
Aleksey Larichkin ◽  
...  

Structure and mechanical properties of the PN85YU15 - Ni composite materials obtained by spark plasma sintering were investigated. Two types of powder mixtures, namely, nickel mixed with coarse-grained nickel aluminide and nickel mixed with fine-grained nickel aluminide were used to obtain the composites. Nickel aluminide and nickel powders were taken in the ratio 7:3 respectively. The effect of the initial nickel aluminide particle sizes and plastic deformation due to the ball milling on the structure and mechanical properties of materials sintered at 1100 °C and pressure of 40 MPa was determined. Plastic deformation and refining the initial intermetallic powder particle sizes leads to increasing the sintered material relative density to 95%. The tensile strength of the PN85YU15-Ni composite material obtained by sintering of the milled PN85YU15 powder and nickel in the ratio 7:3 was 1060 MPa. This value is almost twice as high as the tensile strength of the composite containing a no significant plastic deformed coarse-grained intermetallic compound powder (590 MPa), and three times higher than the tensile strength of the sintered nickel aluminide powder (380 MPa).

2014 ◽  
Vol 1040 ◽  
pp. 772-777 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
Michail A. Korchagin ◽  
Alexander Thömmes ◽  
Vyacheslav I. Mali ◽  
Alexander G. Anisimov ◽  
...  

In this paper structure and mechanical properties of Ni3Al intermetallic compound was studied. The materials was fabricated according to different schemes, which combined mechanical alloying of Ni and Al powders, self-propagating high temperature synthesis (SHS) and spark plasma sintering (SPS). Relative density of all sintered samples was ~ 97 %. Microhardness of the sintered materials ranged from 6100 to 6300 MPa. SPS of 86.71 % wt. Ni and 13.29 % wt. Ni powder at 1100 °C led to formation of material with the highest level of tensile strength equal to 400 MPa.


2007 ◽  
Vol 534-536 ◽  
pp. 833-836 ◽  
Author(s):  
J.K. Lee ◽  
Taek Soo Kim ◽  
Ha Guk Jeong ◽  
Jung Chan Bae

The microstructure and mechanical properties of the Mg97Zn1Y2 alloy prepared by spark plasma sintering of gas atomized powders have been investigated. After consolidation, precipitates were observed to form in the α-Mg solid solution matrix of the Mg97Zn1Y2 alloy. These precipitates consisted of Mg12YZn and Mg24Y5 phases. The density of the consolidated bulk Mg-Zn-Y alloy was 1.86 g/cm3. The ultimate tensile strength and elongation were dependent on the consolidation temperature, which were in the ranges of 280 to 293 MPa and 8.5 to 20.8 %, respectively.


2017 ◽  
Vol 270 ◽  
pp. 197-204 ◽  
Author(s):  
Vojtěch Kučera ◽  
Filip Průša ◽  
Dalibor Vojtěch

Typically, conventional casting technologies are employed to manufacture aluminium alloys from scrap, but during recycling iron accumulates and increases in content. Increased iron content in such alloys reduces their mechanical properties. Because powder metallurgy is able to prepare materials with a very fine microstructure, we investigated its use for the preparation of aluminium alloys with a high iron content and the required mechanical properties. We prepared an Al-Fe17 (wt. %) binary alloy using combination of mechanical working (MW), high-energy ball milling (HEBM) and spark plasma sintering (SPS). The thus-prepared samples were analyzed (XRD, XRF, SEM-EDS, compression stress-strain test) and compared to the commercially-available alloy Al-Si12-Cu1-Mg1-Ni1, which is thermally stable. While the MW followed by SPS sample showed improved plastic deformation, the combination of MW, HEBM and SPS led to the absence of plastic deformation at room temperature. However, the MW+HEBM+SPS had much higher strength (579 MPa) and possessed similar thermal stability as the commercial Al-Si12-Cu1-Mg1-Ni1.


2014 ◽  
Vol 682 ◽  
pp. 188-191 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
T.S. Sameyshcheva ◽  
D.D. Munkueva

The structure and mechanical properties of materials fabricated by spark plasma sintering of mechanically activated mixture of nickel and aluminum nanopowders were investigated. On account of the elemental powders ratio formation of Ni3Al compound was expected. Relative density of sintered samples was equal to ~ 95 %, microhardness of materials was 6540 MPa. Ultimate tensile strength of samples tested according to three-point bending scheme exceed 1100 MPa.


Ceramics ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 53-64 ◽  
Author(s):  
Marcos Díaz ◽  
Anton Smirnov ◽  
C.F. Gutiérrez-González ◽  
Diana Estrada ◽  
José F. Bartolomé

ZrO2 (3Y-TZP) matrix composites with 30 vol % Zr metallic particles were obtained by spark plasma sintering (SPS) using a colloidal processing method. The microstructure and mechanical properties of this novel ceramic–metal composite have been studied. The fracture toughness of composites is slightly higher than the values corresponding to monolithic zirconia. Scanning electron microscope (SEM) observations of the crack path show that the major contributions to toughening are the resulting crack blunting and branching that occurs at crack tips in the metallic particles before the onset of crack propagation. Plastic deformation of the metallic particles is strongly influenced by the constraint induced by the different phase arrangements. This system can be considered as a particulate composite with a periodic residual stress field, in which the metal phase is under strong compression due to the residual thermal stresses as a consequence of the coefficient of thermal expansion mismatch. Therefore, the plastic deformation of the metallic particles in this composite is likely to be reduced to a large extent.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1546 ◽  
Author(s):  
Kyungju Kim ◽  
Dasom Kim ◽  
Kwangjae Park ◽  
Myunghoon Cho ◽  
Seungchan Cho ◽  
...  

Aluminium–copper composite materials were successfully fabricated using spark plasma sintering with Al and Cu powders as the raw materials. Al–Cu composite powders were fabricated through a ball milling process, and the effect of the Cu content was investigated. Composite materials composed of Al–20Cu, Al–50Cu, and Al–80Cu (vol.%) were sintered by a spark plasma sintering process, which was carried out at 520 °C and 50 MPa for 5 min. The phase analysis of the composite materials by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) indicated that intermetallic compounds (IC) such as CuAl2 and Cu9Al4 were formed through reactions between Cu and Al during the spark plasma sintering process. The mechanical properties of the composites were analysed using a Vickers hardness tester. The Al–50Cu composite had a hardness of approximately 151 HV, which is higher than that of the other composites. The thermal conductivity of the composite materials was measured by laser flash analysis, and the highest value was obtained for the Al–80Cu composite material. This suggests that the Cu content affects physical properties of the Al–Cu composite material as well as the amount of intermetallic compounds formed in the composite material.


Author(s):  
Marina I. Zharchenkova ◽  
Sergey A. Perfilov ◽  
Vladimir D. Blank

The effect of carbon content on physico-mechanical properties in tungsten-based composite material obtained by spark plasma sintering method was investigated in this work. Maraging steel-based composition was used as binder and contained such metals as Fe, Ni, Co, Mo, Ti. Carbon content (synthetic diamonds of 3/2 fraction) was varied from 0.1 to 0.3 wt.%. It was shown that 0.1 % wt of carbon resulted in composite durability and plasticity growth though further increase in carbon content up to 0.3% wt. resulted in composite durability growth accompanied with composite plasticity decrease. Sintering time influence (3, 5, 7 min) was investigated. It was shown that this sintering process parameter has ambiguous influence on physico-mechanical properties of obtained composite material due to cumulative effect of other parameters. Sintering time temperature in 1300–1350 °C is investigated. It was shown that 1320 °C is optimal sintering temperature. 1350 °C resulted in binder liquefaction and its components migration from die mould. Aging process of sintered material with maraging-based binder was investigated. In common case, this process resulted in durability, plasticity and hardness growth of composite material. Spark plasma sintering method application allows to minimization of tungsten grain growth. After sintering tungsten grains size remained in 1–3 μm.


2010 ◽  
Vol 129-131 ◽  
pp. 764-768 ◽  
Author(s):  
Wan Nur Azrina Wan Muhammad ◽  
Yoshiharu Mutoh ◽  
Yukio Miyashita

Magnesium powders were sintered by using spark plasma sintering (SPS) and conventional pressureless sintering (PLS) techniques at sintering temperatures ranged from 552°C to 605°C to investigate effect of sintering method on microstructure and mechanical properties of sintered magnesium. High densed magnesium could be obtained by using spark plasma sintering technique compared to conventional presureless sintering at the same sintering temperature. It was found that the ultimate tensile strength increased with increasing sintering temperature for both the materials sintered by PLS and SPS. The magnesium samples prepared by SPS showed better mechanical properties than those prepared by PLS. The microstructural observations revealed that the grain growth was not significant in SPS process compared to PLS, which would enhance the mechanical properties of the SPS sintered magnesium.


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

Sign in / Sign up

Export Citation Format

Share Document