Microstructures and Mechanical Properties of Consolidated Mg-Zn-Y Alloy

2007 ◽  
Vol 534-536 ◽  
pp. 833-836 ◽  
Author(s):  
J.K. Lee ◽  
Taek Soo Kim ◽  
Ha Guk Jeong ◽  
Jung Chan Bae

The microstructure and mechanical properties of the Mg97Zn1Y2 alloy prepared by spark plasma sintering of gas atomized powders have been investigated. After consolidation, precipitates were observed to form in the α-Mg solid solution matrix of the Mg97Zn1Y2 alloy. These precipitates consisted of Mg12YZn and Mg24Y5 phases. The density of the consolidated bulk Mg-Zn-Y alloy was 1.86 g/cm3. The ultimate tensile strength and elongation were dependent on the consolidation temperature, which were in the ranges of 280 to 293 MPa and 8.5 to 20.8 %, respectively.

2014 ◽  
Vol 682 ◽  
pp. 188-191 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
T.S. Sameyshcheva ◽  
D.D. Munkueva

The structure and mechanical properties of materials fabricated by spark plasma sintering of mechanically activated mixture of nickel and aluminum nanopowders were investigated. On account of the elemental powders ratio formation of Ni3Al compound was expected. Relative density of sintered samples was equal to ~ 95 %, microhardness of materials was 6540 MPa. Ultimate tensile strength of samples tested according to three-point bending scheme exceed 1100 MPa.


2010 ◽  
Vol 129-131 ◽  
pp. 764-768 ◽  
Author(s):  
Wan Nur Azrina Wan Muhammad ◽  
Yoshiharu Mutoh ◽  
Yukio Miyashita

Magnesium powders were sintered by using spark plasma sintering (SPS) and conventional pressureless sintering (PLS) techniques at sintering temperatures ranged from 552°C to 605°C to investigate effect of sintering method on microstructure and mechanical properties of sintered magnesium. High densed magnesium could be obtained by using spark plasma sintering technique compared to conventional presureless sintering at the same sintering temperature. It was found that the ultimate tensile strength increased with increasing sintering temperature for both the materials sintered by PLS and SPS. The magnesium samples prepared by SPS showed better mechanical properties than those prepared by PLS. The microstructural observations revealed that the grain growth was not significant in SPS process compared to PLS, which would enhance the mechanical properties of the SPS sintered magnesium.


2014 ◽  
Vol 1040 ◽  
pp. 772-777 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
Michail A. Korchagin ◽  
Alexander Thömmes ◽  
Vyacheslav I. Mali ◽  
Alexander G. Anisimov ◽  
...  

In this paper structure and mechanical properties of Ni3Al intermetallic compound was studied. The materials was fabricated according to different schemes, which combined mechanical alloying of Ni and Al powders, self-propagating high temperature synthesis (SHS) and spark plasma sintering (SPS). Relative density of all sintered samples was ~ 97 %. Microhardness of the sintered materials ranged from 6100 to 6300 MPa. SPS of 86.71 % wt. Ni and 13.29 % wt. Ni powder at 1100 °C led to formation of material with the highest level of tensile strength equal to 400 MPa.


Author(s):  
Hamed Naser-Zoshki ◽  
Ali-Reza Kiani-Rashid ◽  
Jalil Vahdati-Khaki

In this work, non-equiatomic W10Mo27Cr21Ti22Al20 refractory high-entropy alloy (RHEA) was produced using mechanical alloying followed by spark plasma sintering. The phase formation, microstructure, and compressive mechanical properties of the alloy were studied. During mechanical alloying, a Body-centered cubic (BCC) solid solution phase with a particle size of less than 1 µm was obtained after 18 h ball milling. The microstructure of the sintered sample exhibits three distinct phases consisting of two solid solution phases BCC1 and BCC2 as well as fine TiCxOy precipitates distributed in them. The volume fractions of each phase were about 79%, 8%, and 13%, respectively. The sintered W10Mo27Cr21Ti22Al20 showed yield strengths of 2465, 1506, 405, and 290 MPa at room temperature 600, 1000, and 1200°C, respectively, which are about twice that of the same refractory high-entropy alloy produced by vacuum arc melting. At 1000 and 1200°C, the strength after yielding gradually increased to 970 and 718 MPa at a compressive strain of 60%. The studied refractory high-entropy alloy can have good potential in high-temperature applications due to its high specific strength at elevated temperatures compared to conventional Ni-based superalloys and most as-reported refractory high-entropy alloys.


2015 ◽  
Vol 788 ◽  
pp. 151-156 ◽  
Author(s):  
Lilia Shevtsova ◽  
Tatyana Sameyshcheva ◽  
Dmitry Terentyev ◽  
Iuliia Malyutina ◽  
Aleksey Larichkin ◽  
...  

Structure and mechanical properties of the PN85YU15 - Ni composite materials obtained by spark plasma sintering were investigated. Two types of powder mixtures, namely, nickel mixed with coarse-grained nickel aluminide and nickel mixed with fine-grained nickel aluminide were used to obtain the composites. Nickel aluminide and nickel powders were taken in the ratio 7:3 respectively. The effect of the initial nickel aluminide particle sizes and plastic deformation due to the ball milling on the structure and mechanical properties of materials sintered at 1100 °C and pressure of 40 MPa was determined. Plastic deformation and refining the initial intermetallic powder particle sizes leads to increasing the sintered material relative density to 95%. The tensile strength of the PN85YU15-Ni composite material obtained by sintering of the milled PN85YU15 powder and nickel in the ratio 7:3 was 1060 MPa. This value is almost twice as high as the tensile strength of the composite containing a no significant plastic deformed coarse-grained intermetallic compound powder (590 MPa), and three times higher than the tensile strength of the sintered nickel aluminide powder (380 MPa).


2019 ◽  
Vol 960 ◽  
pp. 135-139
Author(s):  
Zheng Yang Hu ◽  
Zhao Hui Zhang ◽  
Qi Song ◽  
Shi Pan Yin ◽  
Hao Wang ◽  
...  

In this paper, TiB reinforced Ti-6Al-4V matrix composites were successfully fabricated using a spark plasma sintering, hot rolling and heat treating process. (Transformed β-Ti + secondary α-Ti) domains were formed in TiB/TMCs after heat treatment. The size of these domains increases from 2.5 μm to 4.6 μm with the increase of solution time. The aspect ratio of whiskers monotonously decreases along with the solution time extending. The highest ultimate tensile strength of 1332 MPa and yield-strength of 1315 MPa were achieved by (940 °C, 15min+ water-quenching+537 °C, 4h) TMC.


2013 ◽  
Vol 747-748 ◽  
pp. 636-640 ◽  
Author(s):  
Jian Yang ◽  
Zhi Meng Guo ◽  
Wei Wei Yang ◽  
Ji Luo ◽  
Cun Guang Chen

9Cr-0.35wt.%Y2O3 oxide dispersion strengthened (ODS) ferritic/martensitic steels were prepared by mechanically alloying (MA) and spark plasma sintering (SPS). FE-SEM and TEM with X-ray energy spectrum (EDX) were employed to characterize the microstructural evolution and chemical composition before and after heat treatment. The tensile properties at room temperature were also investigated by electronic tensile test. The result shows that it is mainly of equiaxed ferrite microstructure by SPS with mean grain size of about 500nm. Dispersoids about 5-20nm which are enriched in Y, Ti and O uniformly distribute in the matrix. It exhibits a high relative density, ultimate tensile strength and yield strength of 99.5%, 1554MPa and 1430MPa, respectively. The microstructures are of slender lath martensitic after 10%NaCl water solution quenching, while after tempering at 750 which change into mainly equiaxed ferritic and a little residual ferrite. The ODS steel exhibits ultimate tensile strength, yield strength and total elongation of 1198MPa, 1006MPa and 12.8% after tempering, respectively.


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

Sign in / Sign up

Export Citation Format

Share Document