Spark Plasma Sintering of Mechanically Activated Ni and Al Nanopowders

2014 ◽  
Vol 682 ◽  
pp. 188-191 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
T.S. Sameyshcheva ◽  
D.D. Munkueva

The structure and mechanical properties of materials fabricated by spark plasma sintering of mechanically activated mixture of nickel and aluminum nanopowders were investigated. On account of the elemental powders ratio formation of Ni3Al compound was expected. Relative density of sintered samples was equal to ~ 95 %, microhardness of materials was 6540 MPa. Ultimate tensile strength of samples tested according to three-point bending scheme exceed 1100 MPa.

2007 ◽  
Vol 534-536 ◽  
pp. 833-836 ◽  
Author(s):  
J.K. Lee ◽  
Taek Soo Kim ◽  
Ha Guk Jeong ◽  
Jung Chan Bae

The microstructure and mechanical properties of the Mg97Zn1Y2 alloy prepared by spark plasma sintering of gas atomized powders have been investigated. After consolidation, precipitates were observed to form in the α-Mg solid solution matrix of the Mg97Zn1Y2 alloy. These precipitates consisted of Mg12YZn and Mg24Y5 phases. The density of the consolidated bulk Mg-Zn-Y alloy was 1.86 g/cm3. The ultimate tensile strength and elongation were dependent on the consolidation temperature, which were in the ranges of 280 to 293 MPa and 8.5 to 20.8 %, respectively.


2010 ◽  
Vol 129-131 ◽  
pp. 764-768 ◽  
Author(s):  
Wan Nur Azrina Wan Muhammad ◽  
Yoshiharu Mutoh ◽  
Yukio Miyashita

Magnesium powders were sintered by using spark plasma sintering (SPS) and conventional pressureless sintering (PLS) techniques at sintering temperatures ranged from 552°C to 605°C to investigate effect of sintering method on microstructure and mechanical properties of sintered magnesium. High densed magnesium could be obtained by using spark plasma sintering technique compared to conventional presureless sintering at the same sintering temperature. It was found that the ultimate tensile strength increased with increasing sintering temperature for both the materials sintered by PLS and SPS. The magnesium samples prepared by SPS showed better mechanical properties than those prepared by PLS. The microstructural observations revealed that the grain growth was not significant in SPS process compared to PLS, which would enhance the mechanical properties of the SPS sintered magnesium.


2012 ◽  
Vol 706-709 ◽  
pp. 217-221 ◽  
Author(s):  
Hiroshi Izui ◽  
Genki Kikuchi

Titanium alloys were produced by blended elemental powder metallurgy (P/M) method. We focused on the effect of alloying elements (Fe, Mo, and Al) on the consolidation and mechanical properties of Ti compacts prepared by spark plasma sintering. The effects of amount of alloying elements and sintering temperature on the relative density and tensile properties of Ti compacts were investigated. The addition of β-stabilizing elements (Fe and Mo) significantly improved the densification of Ti compacts, where the relative density ratio of Ti-5 wt% Mo specimen became higher than 99.9 %, and Ti-5 wt% Fe specimen higher than 99.0 %. On the other hand, the addition of Al as α-stabilizing element led to improve the relative density of Ti-5 wt% Al compact with higher than 99.9 %. The tensile property for sintered Ti-5 wt% Mo compact had the highest elongation of 16 %. It will be discussed the microstructures and tensile property of the compacts.


2007 ◽  
Vol 336-338 ◽  
pp. 1050-1052 ◽  
Author(s):  
Hai Tao Wu ◽  
Yun Long Yue ◽  
Wei Bing Wu ◽  
Hai Yan Yin

The γ-TiAl intermetallic compounds were produced at the temperature ranging from 850°C to 1050°C by the Spark Plasma Sintering (SPS) process. The effects of sintering temperature and holding time on the mechanical properties of γ-TiAl intermetallic compounds were investigated. The γ-TiAl intermetallic compounds sintered at 1050°C for 10 min showed a high relative density more than 98%, and had the best three-point bending strength of 643MPa, fracture toughness of 12 MPa·m1/2 and microhardness of 560MPa. The microstructural observations indicated typical characteristics of intergranular fracture, which meant the poor ductility of γ-TiAl intermetallic compounds.


2014 ◽  
Vol 1040 ◽  
pp. 772-777 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
Michail A. Korchagin ◽  
Alexander Thömmes ◽  
Vyacheslav I. Mali ◽  
Alexander G. Anisimov ◽  
...  

In this paper structure and mechanical properties of Ni3Al intermetallic compound was studied. The materials was fabricated according to different schemes, which combined mechanical alloying of Ni and Al powders, self-propagating high temperature synthesis (SHS) and spark plasma sintering (SPS). Relative density of all sintered samples was ~ 97 %. Microhardness of the sintered materials ranged from 6100 to 6300 MPa. SPS of 86.71 % wt. Ni and 13.29 % wt. Ni powder at 1100 °C led to formation of material with the highest level of tensile strength equal to 400 MPa.


2012 ◽  
Vol 520 ◽  
pp. 208-213 ◽  
Author(s):  
Shi Bo Guo ◽  
Chun Bo Cai ◽  
Yong Qiang Zhang ◽  
Yong Xiao ◽  
Xuan Hui Qu

Ti-24Nb-4Zr-7.9Sn alloy was prepared by Powder Metallurgy (PM) and Spark Plasma Sintering (SPS) using titanium hydride powder, niobium powder, zirconium powder and tin powder as raw materials. The effect of sintering process on microstructure and mechanical properties was investigated by mechanical measurement and SEM. The results showed that the best sintering process by PM was at 12500C for 2 h. The relative density, tensile strength and elongation of the alloy reached 97.2%, 705MPa and 6.2%, respectively. The microstructure was a typical Widmannstatten microstructure, which possessed β-matrix and α-precipitation. The best process by SPS was at 12500C. The relative density, tensile strength and elongation of the alloy sintered by SPS reached 99.4%, 788.5MPa and 6.4%, respectively. The grain size was about 100µm and the microstructure was uniform. The fracture morphology of the alloy was ductile rupture. Compared to PM, Ti-24Nb-4Zr-7.9Sn alloy fabricated by SPS exhibited better comprehensive properties and more uniform microstructure.


2014 ◽  
Vol 602-603 ◽  
pp. 380-383
Author(s):  
Chao He ◽  
Xiao Fei Shi ◽  
Xin Yan Yue ◽  
Jiang Jun Wang ◽  
Hong Qiang Ru

SiAlON-cBN composites with different contents of cBN were consolidated by spark plasma sintering (SPS) at 1450°C using Y2O3, B2O3 and Al as additives. The effect of cBN content on the density, phase compositions, microstructures and mechanical properties of β-SiAlON-cBN composites was investigated. With increasing the cBN content, the density and hardness of β-SiAlON-cBN composites decreased. Fracture toughness could increase thanks to the crack deflection resulted from the cBN particles. For β-SiAlON-10 wt% cBN composites, the optimum hardness and highest relative density were 13 GPa and 96.4 %, respectively. For β-SiAlON-40 wt% cBN composites, the highest fracture toughness was KIC = 5.3 MPa∙m1/2.


2008 ◽  
Vol 368-372 ◽  
pp. 1004-1006 ◽  
Author(s):  
Yun Long Yue ◽  
H.T. Wu

Ti2AlC/TiAl composites with the addition of niobium were prepared by spark plasma sintering using titanium, aluminum, niobium elemental powers and TiC particles as reactants. The experimental and analytical studies on this kind of material concentrated on the relationship between reinforcement phase and mechanical properties. The Ti2AlC/TiAl composites with 5% niobium exhibit high mechanical properties. The three-point bending strength and fracture toughness reaches as high as 915MPa and 23 MPa·m1/2, respectively. It is found that the in-situ reaction occurs at 1100°C with the addition of niobium at the interface between the TiAl matrix and original reinforcement TiC. Further XRD results indicate that the difference in the reinforcement phase from TiC to Ti2AlC is one of the most important origins to the variation in mechanical properties.


2017 ◽  
Vol 726 ◽  
pp. 143-147
Author(s):  
Chen Chen ◽  
Chang Chun Lv ◽  
Cheng Biao Wang ◽  
Zhi Jian Peng

In this work, we fabricated ZrB2-SiC-ZrSi2 composites containing different fractions (0.5-5 vol.%) of ZrSi2 by spark plasma sintering at 1600 °C under a uniaxial pressure of 30 MPa. The addition effect of ZrSi2 on the composition, microstructure and mechanical properties of the composites were investigated. The results indicated that the densification of ZrB2-SiC-ZrSi2 composites could be enhanced along with the increase of the added fraction of ZrSi2, with its relative density reaching the maximum of about 85.6% when 3 vol.% of ZrSi2 was added. The hardness of the composites would decrease after the addition of ZrSi2 in the range of 960-1200 HV5. The flexural strength initially increased and then decreased with the addition of ZrSi2, reaching a maximum of about 330 MPa when 3 vol.% of ZrSi2 was added.


Sign in / Sign up

Export Citation Format

Share Document