State Feedback Controller Using Pole Placement Method for Linear Buck Converter to Improve Overshoot and Settling Time

2015 ◽  
Vol 793 ◽  
pp. 211-215
Author(s):  
Mazwin Mazlan ◽  
Noor Haqkimi ◽  
Chanuri Charin ◽  
Nur Fairuz ◽  
Nurul Izni ◽  
...  

Switched mode DC-DC converters are electronic circuits which convert a voltage from one level to a higher or lower level voltage. This paper presents a new solution approach to controller and observer controller of DC-DC Buck converter. The designs in this paper of DC-DC Buck converter is input voltage 20V step down to 12V output voltage. For control the system simulation investigation into development of controller and observer controller using MATLAB Simulink® software. The simulation develops of the controller and observer controller with mathematical model of DC-DC Buck converter. This paper also providing LQR controller to compare the performance of the system. Finally, the performance output voltage of DC-DC Buck converter is analyzed in terms of time response, overshoot and steady state error.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1131 ◽  
Author(s):  
Mauricio Dalla Vecchia ◽  
Giel Van den Broeck ◽  
Simon Ravyts ◽  
Johan Driesen

This paper explores and presents the application of the Inductor–Diode and Inductor-Capacitor-Diode structures in a DC–DC step-down configuration for systems that require voltage adjustments. DC micro/picogrids are becoming more popular nowadays and the study of power electronics converters to supply the load demand in different voltage levels is required. Multiple strategies to step-down voltages are proposed based on different approaches, e.g., high-frequency transformer and voltage multiplier/divider cells. The key question that motivates the research is the investigation of the aforementioned Inductor–Diode and Inductor–Capacitor–Diode, current multiplier/divider cells, in a step-down application. The two-stage buck converter is used as a study case to achieve the output voltage required. To extend the intermediate voltage level flexibility in the two-stage buck converter, a second switch was implemented replacing a diode, which gives an extra degree-of-freedom for the topology. Based on this modification, three regions of operation are theoretically defined, depending on the operational duty cycles δ2 and δ1 of switches S2 and S1. The intermediate and output voltage levels are defined based on the choice of the region of operation and are mapped herein, summarizing the possible voltage levels achieved by each configuration. The paper presents the theoretical analysis, simulation, implementation and experimental validation of a converter with the following specifications; 48 V/12 V input-to-output voltage, different intermediate voltage levels, 100 W power rating, and switching frequency of 300 kHz. Comparisons between mathematical, simulation, and experimental results are made with the objective of validating the statements herein introduced.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2143 ◽  
Author(s):  
Hsiao-Hsing Chou ◽  
Hsin-Liang Chen ◽  
Yang-Hsin Fan ◽  
San-Fu Wang

This study presents a new virtual inductor current circuit to reduce circuit complexity, which is not necessary to sense inductance current directly. The buck converter was designed to produce an output voltage of 1.0–2.5 V for a 3.0–3.6 V input voltage. The load current range was from 100 mA to 500 mA. It was simulated and verified by SIMPLIS and MathCAD. The simulation results of this buck converter show that the voltage error is within 1%, and the recovery time is smaller than 2 ms for step-up and step-down load transients. Additionally, it achieves less than 26 mV overshoot at full-load step transient response. The circuit topology would be able to fabricate using TSMC 0.35 mm 2P4M CMOS technology. The control mechanism, implementation, and design procedure are presented in this paper.


2013 ◽  
Vol 5 (1) ◽  
pp. 29-34
Author(s):  
Yul Antonisfia ◽  
Era Madona

Buck converter is one of DC chopper which has the function of stabilizing the voltage to lower voltage where the output voltage is lower than the input voltage without having to remove power is relatively large. By using a buck converter is a high voltage can be reduced to lower as you wish without losing power is relatively large. The voltage output of the buck converter is able to charge the battery. The magnitude of the output voltage depends dutycyle switching generated by the microcontroller. This tool is also equipped with a flow sensor is used to detect the charging current into the battery. If the charging current is reduced, the buzzer will sound. The tool is based microcontrollers using BASCOM ATMEGA8535, which can generate a PWM with dutycyle specified. Dutycyle determined the size of the input voltage and the desired output.


2021 ◽  
Vol 16 (5) ◽  
pp. 766-772
Author(s):  
Le Luo ◽  
Ming-Zhong Yang

In this paper, a new discrete-time sliding mode predictive control (DSMPC) strategy with a PID sliding function is proposed for synchronous DC-DC Buck converter. The model predictive control, along with digital sliding mode control (DSMC) is able to further reducing the chattering phenomenon, steady-state error, overshoot, and undershoot of the converter output voltage. The proposed control method implementation only requires output error voltage evaluation. The effectiveness of the proposed DSMPC is proved through simulation results executed by the MATLAB/SIMULINK software. These results demonstrate its performance is superior to DSMC. The selected synchronous Buck converter in this paper has 380 V input voltage and 48 V output voltage that can be applied in sections of DC distribution systems.


2019 ◽  
Vol 16 (12) ◽  
pp. 5162-5165
Author(s):  
Cekmas Cekdin ◽  
Zainuddin Nawawi ◽  
Muhammad Faizal

Step down regulator is a device that can reduce the more significant input voltage to a smaller output voltage. The output is stable and well regulated, although the voltage fluctuates in the recommended input voltage range. In the system using IC LM 2596, the input voltage is 40 Volt dc, and the output voltage is 30 Volt dc. The output current of 15 amperes is applied to charge a 100 Ampere hour (Ah) battery on an inverter system installed and integrated with other electronic devices. The step-down IC LM 2596 will be stable at the output current below 15 Ampere. It is especially stable at load currents from 13.2 Ampere to 14.57 Ampere. In order for the current not to shrink, a good cooling system must be designed to dispose of heat on the IC LM 2596. Because the high heat greatly affects the output current on the IC LM 2596.


Author(s):  
Marcelo Gradella Villalva ◽  
Ernesto Ruppert Filho

The control of the input voltage of DC-DC converters is frequently required in photovoltaic applications. In this special situation, unlike conventional converters, the output voltage is constant and the input voltage is controlled. This paper deals with the analysis and the control of the buck converter with constant output voltage and variable input.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2333
Author(s):  
Xi Zhang ◽  
Tianshi Wang ◽  
Bocheng Bao

Fast load transient response and high light-load efficiency are two key features of the constant on-time (COT) control technique that has been widely used in numerous applications, such as for voltage regulators and point-of-load converters. However, when load step-down occurs during an on-time interval, the COT controller cannot respond until the COT interval expires. This delay causes an additional output voltage overshoot, resulting in unloading transient performance limitation. To eliminate the delay and improve the unloading transient response of the COT controller, a load step-down detection circuit is proposed based on capacitor current COT (CC-COT) control. In the detection circuit, the load step-down is monitored by comparing the measured capacitor current with the preset threshold voltage. Once the load step-down is monitored, the on-time is promptly truncated and the switch is turned off. With the proposed detection circuit, the CC-COT-controlled buck converter can monitor the load step-down without any delay and obtain less output voltage overshoot when the load step-down occurs during the on-time interval. PSIM circuit simulations are employed to demonstrate the feasibility of the detection circuit.


Author(s):  
Shaik Gousia Begum ◽  
Syed Sarfaraz Nawaz ◽  
G. Sai Anjaneyulu

This paper presents the design of a Fuzzy logic controller for a DC-DC step-down converter. Buck converters are step-down regulated converters which convert the DC voltage into a lower level standardized DC voltage. The buck converters are used in solar chargers, battery chargers, quadcopters, industrial and traction motor controllers in automobile industries etc. The major drawback in buck converter is that when input voltage and load change, the output voltage also changes which reduces the overall efficiency of the Buck converter. So here we are using a fuzzy logic controller which responds quickly for perturbations, compared to a linear controllers like P, PI, PID controllers. The Fuzzy logic controllers have become popular in designing control application like washing machine, transmission control, because of their simplicity, low cost and adaptability to complex systems without mathematical modeling So we are implementing a fuzzy logic controller for buck converter which maintains fixed output voltage even when there are fluctuations in supply voltage and load. The fuzzy logic controller for the DC-DC Buck converter is simulated using MATLAB/SIMULINK. The proposed approach is implemented on DC-DC step down converter for an input of 230V and we get the desired output for variations in load or references. This proposed system increases the overall efficiency of the buck converter.


2015 ◽  
Vol 719-720 ◽  
pp. 417-425 ◽  
Author(s):  
Husan Ali ◽  
Xian Cheng Zheng ◽  
Shahbaz Khan ◽  
Waseem Abbas ◽  
Dawar Awan

The switched mode dc-dc converters are some of the most widely used power electronics circuits because of high conversion efficiency and flexible output voltage. Many methods have been developed for the control of dc-dc converters. This paper deals with design of controller for dc-dc buck converter using various control techniques. The first two control techniques are based on classical or linear control methods i.e. PI and PID control, while the other two control technique are based on non linear control method i.e. Sliding Mode Control (SMC) and Sliding Mode Proportional Integral Derivative Control (SMC-PID). The output voltage and the inductor current of the applied control techniques are analyzed and compared in transient and steady state region. Also the robustness of the buck converter system is tested for load changes and input voltage variations. Matlab/Simulink is used for the simulations. The detailed simulation results are presented, which compare the performance of the designed controllers for various cases. The results show that the non linear control for DC/DC Buck converter proves to be more robust than linear control especially when dynamic tests are applied.


Sign in / Sign up

Export Citation Format

Share Document